Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

8-10-2018

Automating Mobile Device File Format Analysis

Richard A. Dill

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons, and the Optics Commons

Recommended Citation

Dill, Richard A., "Automating Mobile Device File Format Analysis" (2018). Theses and Dissertations. 1916.
https://scholar.afit.edu/etd/1916

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in

Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard. mansfield @afit.edu.

www.manharaa.com

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1916?utm_source=scholar.afit.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Automating Mobile Device File Format Analysis

DISSERTATION

Rich Dill, Maj, USAF
AFIT-ENG-DS-18-S-008

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manharaa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manharaa.com

AFIT-ENG-DS-18-5-008

AUTOMATING MOBILE DEVICE FILE FORMAT ANALYSIS

DISSERTATION

Presented to the Faculty
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Computer Science

Rich Dill, B.S.C.S., M.S.C.
Maj, USAF

10 July 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manharaa.com

AFIT-ENG-DS-18-5-008

AUTOMATING MOBILE DEVICE FILE FORMAT ANALYSIS

DISSERTATION

Rich Dill, B.S.C.S., M.S.C.
Maj, USAF

Committee Membership:

Dr. Gilbert L. Peterson, PhD, Chairman
Dr. Douglas D. Hodson, PhD, Member
Lt Col Richard S. Seymour, PhD, Member

Dr. Jack E. McCrae, PhD, Dean’s Representative

www.manharaa.com

AFIT-ENG-DS-18-5-008

Abstract

Forensic tools assist examiners in extracting evidence from application files from mo-
bile devices. If the file format for the file of interest is known, this process is straight-
forward, otherwise it requires the examiner to manually reverse engineer the data
structures resident in the file. This research presents the Automated Data Structure
Slayer (ADSS), which automates the process to reverse engineer unknown file for-
mats of Android applications. After statically parsing and preparing an application,
ADSS dynamically runs it, injecting hooks at selected methods to uncover the data
structures used to store and process data before writing to media. The resultant asso-
ciation between application semantics and bytes in a file reveal the structure and file
format. ADSS has been successfully evaluated against Uber and Discord, both pop-
ular Android applications, and reveals the format used by the respective proprietary

application files stored on the filesystem.

v

www.manharaa.com

Acknowledgements

The Christian shoemaker does his duty not by putting little crosses on the shoes, but
by making good shoes, because God is interested in good craftsmanship.

— Martin Luther

Thanks to the many people who helped make completing this dissertation possible.
My wife and kids who let me exchange time with family to conduct research; my
adviser (Dr. Peterson) for challenging my research and writing; my fellow students
(Camdon Cady, Chris Wayne, and David King) who let me brainstorm ideas with
them; the technical experts (Ben Gruverand Ole Andr V. Ravns) for answering my

questions about Smali and Frida, respectively.

Rich Dill

www.manharaa.com

Table of Contents

Page
ADStract . . oo iv
Acknowledgements v
List of Figures viii
List of Tables. X
List of Abbreviations xi
L. Introduction 1
1.1 Motivation 1
1.2 Methodologyo 3
1.3 SUMMATY . ..o 5
II. Background 6
2.1 Android Primer 6
History ..o 7
Architecture 8
Internals 8
2.2 How Applications Work 10
Architecture 11
Execution 16
Memory Allocation 25
Filesystem Interaction 28
2.3 Reverse Engineering i 29
Static Techniques. 29
Dynamic Techniques 31
ITI. Related Work o 34
3.1 Static Analysis of Binary Executables, 34
3.2 Virtual Machine Data Flow Analysis 36
3.3 Native Data Flow Analysis i 38

3.4 Integrating Native and Virtual Machine Dataflow
Analysis Techniques 42
3.5 SUIMINATY .« ottt et e e e e e e e 43

vi

www.manharaa.com

IV. System Design and Implementation 44
4.1 ADSS OVEIVIEW . . ottt 44

4.2 Static Phase 46

4.3 Dynamic Phase 48

4.4 SUMINATY © ottt et e e e e e e e 56

V. Evaluation 57
5.1 Experimental Design.......... ... 57

5.2 UDer o 58

5.3 Discord 69

D.4 SUIMINATY .« o vttt e e e e e e e e e 82

VI. Conclusion and Future Work 83
6.1 Expanding the Research....... 84
Multiple Platforms 84

Wide Range of Infrastructure 85
Encrypted Files 85
Application Security Analysis i 86
Appendix A. ADSS Final Hook List for Uber 87
Appendix B. ADSS Final Hook List for Discord 93
Appendix C. Parser for Uber 98
Appendix D. Parser for Discord 104
Bibliography 114

vil

www.manharaa.com

List of Figures

Figure Page
1. The architecture of the Unix OS [1]......... ... oo i i, 8
2. The architecture of Android OS [2]. 9
3. Life of an APK [3]. 11
4. APK creation.. 11
5. Android APK hierarcy [4]. 12
6. Android APK installation. 13
7. ELF during linking and execution views [5]. 14
8. Application executing. 16
9. Building with a shared library [6]........., 17
10. Load time linking of a dynamic library [6]. 18
11. Native application running in memory [7]......... 20
12. Kernel structures associated with a process [8]. 21
13. Process segments mapped to memory [8]. L. 22
14. High Level view of Linux virtual memory [9]. 24
15. ARM AARCHG64 Special Registers [10]. 25
16. Java Heap and Stack space example [11]. 27
17. Automated Data Structure Slayer Phases........................... 45
18. ADSS Static Phase. 46
19. ADSS Dynamic Phase. 49
20. Stack Trace Output. 54
21. TOS Tree. ..o 26
22. Uber Thread Call Stack. o . 59

viil

www.manharaa.com

Figure Page

23. Uber Call Tree.o 61
24. Header of file realtime-demo KEY RIDER.ovvvinienen ... 64
25. Hex representation file realt ime—-demo_KEY _RIDER. 65
26. Hex representation file realtime—-demo_KEY _RIDER. 66
27. Schema from Rider. 67
28. Schema from Rider (cont’d). il 68
29. Format of file realtime-demo KEY RIDER.c.vvnvunn ... 69
30. Discord Thread Call Stack. 71
31. Discord Call Tree. 74
32. Hex representation of file

STORE MESSAGES_CACHE V17, . e 76
33. Hex representation of file

STORE_MESSAGES_CACHE_V17 (cont’d).ccoiuiiunnnnnnnnn.. 7
34. Hex representation of file

STORE_MESSAGES_CACHE_V17 (cont’d).ccoiuuuuunnnnnnnn.. 78
35. Hex representation of file

STORE_MESSAGES_CACHE_V17 (cont’d).cooiuiiuinnnnnnnn.. 79
36. Schema from Model Message. i 80
37. Discord Hex ModelMessage. 81
38. Format of file STORE_MESSAGES CACHE V17. 82

1X

www.manharaa.com

List of Tables

Table Page
1. Variable width for registers for AARCH64 used by 64

bit Android OS [10]. ... 25
2. Primitive Types[12]. 48
3. Uber Results. 62
4. Discord Pre-meta class identifier table. 72
D. Discord Results. 75

www.manharaa.com

Abbreviation
DoD
FBI
DoE
DEA
IRS
DoJ
(ON
ADSS
AVM
VM
DEX
ODEX
ART
JNI
HAL
APK
ELF
ELF
XML
CPU
SRAM

PFN

List of Abbreviations

Page
Department of Defense 2
Federal Bureau of Investigation 3
Department of Energy 3
Drug Enforcement Agency.......... i, 3
Internal Revenue Service 3
Department of Justice 3
Operating System 5
Automated Data Structure Slayer 5
Android Virtual Machine 9
Virtual Machine 9
Dalvik Executable. 9
Optimized Dalvik EXcutable file 9
Android RunTime 9
Java Native Interface L 9
Hardware Abstraction Layer 10
Android Application Package, 10
Executable and Linker Format, 10
Executable and Linker Format 13
Extensible Markup Language 13
Central Processing Unit i, 16
System Random Access Memory, 19
Page Frame Number o 23

x1

www.manharaa.com

Abbreviation
VPFN

ABI

BLOB

DBI

FFEx86
HFSM

10

REWARDS

SDCF

ADB

Page
Virtual Page Frame Number 23
Application Binary Interface, 24
Binary Large OBject 28
Dynamic Binary Instrumentation............................ 31
File-Format Extractor for x86.........., 35
Hierarchical Finite State Machine, 35
Standard Input Output 35
Reverse Engineering Work for Automated
Revelation of Data Structures........... 40
Static and Dynamic Combined Framework.................... 42
Android Debug Bridge 57

xii

www.manharaa.com

AUTOMATING MOBILE DEVICE FILE FORMAT ANALYSIS

I. Introduction

The forensic community faces a serious problem — tools for mobile device analy-
sis do not fully extract evidentiary data from cell phones. The leading commercial
forensic tools (Oxygen, XRY, Blacklight, Cellebrite, Encase) [13] each provide differ-
ing capabilities to the forensic community, but even in summation, they are unable
to extract all the available forensic data. The fault does not lie with the forensic
tools or the developers, but with the changing application landscape, encompassing
frequent software updates to a huge repository of available applications — 3.5M from
the Google Play Store and 2.2M from the Apple Store as of Dec 2018 [14].

While changes to software bring security enhancements and new features for users,
they also modify how applications collect, process, and store user data on the device.
In response to each application update, forensic tools must also update to support
the new ways applications store data on the filesystem. If no tool is available, the
forensic examiner must manually reverse engineer the application to determine how

and where it stores data on the filesystem.

1.1 Motivation

Finding faster method to reverse engineer application file formats motivated this
research. Knowledge of how and where applications store data on the device is good
for forensic examiners to extract digital information during an investigation. This
is a large and growing field of research sine applications process, disseminate, and

store data in many different ways. For example, the out of band communication,

www.manaraa.com

end-to-end encryption, and unique storage solutions of some chatting applications
provide criminals the privacy and anonymity needed to coordinate, conduct, and
plan nefarious activities [15] [16] [17] [18].

Finding faster methods to reverse engineer application file formats motivated this
research to develop an automated solution to reverse unknown mobile application file
formats. The out of band communication, end-to-end encryption, and unique storage
solutions that some of the chatting applications provide criminals the privacy and
anonymity needed to coordinate, conduct, and plan nefarious activities [15] [16] [17]
[18].

Forensic examiners have a challenging time analyzing applications that advertise
their purpose for secure chatting. Additionally, there is a whole class of applications
that mask their intent behind a euphemistic facade. For example, a 2015 court case
[19] involved several high school sexting pictures using an application disguised as a
calculator [20].

Furthermore, applications exist that have a chatting feature as a secondary pur-
pose. For example, gaming applications, such as Zynga Words with Friends[21], social
dating applications, such as Tinder [22], and navigational applications, such as Waze
23], allow for users to chat online with each other, and thousands more like them.

The reliance on phones for everyday tasks is at an all time high — users rely
on their mobile devices for communicating, navigating, banking, and other day in
the life tasks[24]. These routine user activities leave behind forensic artifacts on the
phone storage that if stitched together correctly could be used to analyze typical user
behaviors.

Due to increased use and evidentiary contents, the Department of Defense (DoD)
is motivated to invest in more efficient and cost effective solutions to access and extract

digital evidence from mobile devices. For example, in response to the terrorist attack

www.manaraa.com

in San Bernardino, California, the FBI issued a court order for Apple to unlock the
shooters iPhone and extract forensic data that would be relevant in the criminal
investigation [25]. After entering into a political battle with Apple, the FBI went
another route and purchased services at $900,000 [26] from Cellebrite [27] to break
into the terrorist used device to extract digital evidence. Cellebrite is an Israel-based
vendor that specializes in digital mobile forensics [28].

Several other government agencies have invested in digital forensic software and
services from Cellebrite. The Federal Bureau of Investigation (FBI) signed 187 con-
tracts valued at $2 Million dollars for mobile forensics products and services from
Cellebrite in 2016 [29]. Other agencies that have used their services include the
Department of Energy (DoE), Drug Enforcement Agency (DEA), Internal Revenue
Service (IRS), military services, and government departments [26].

The Department of Justice (DolJ) relies on digital evidence accessed and extracted
from mobile devices to prosecute criminals and defend the innocent in court [30]. In a
2017 case, police use geolocation data from a suspect’s phone to convict the murdered
wife’s husband of homicide [31]. After serving two decades for a murder conviction,

key cell phone geolocation acquits the wrongly accused in 2018 [32].

1.2 Methodology

The purpose of this research is to develop a process that automates the analysis
of an application to determine how and where it stores evidentiary data in files. The
goal is an implemention of the new proces that reduces the extraction time required
for an examiner to collect information from an application’s files.

The hypothesis is that through an automated static with iterative dynamic ap-
proach, one can reconstruct the file formats that the application uses to store its data

structures to the filesystem. By establishing a linkage between the data structures

www.manaraa.com

used in the application layer and the bytes written to the the file on the filesystem,
an object-to-data legend is constructed that links the application data structures to
the physical sections of the file. With this mapping, a forensic tool can extract ev-
identiary information from a given application’s data file. This methodology would
eliminate the need to manually reverse engineer an application to determine where
user information is located in an application’s storage files. The forensic examiner
can use the revealed file format to reverse engineer an application and all subsequent
developer updates.

Due to the open source nature of the operating system and the relevant Linux
research into unknown file formats, this research focuses on Android applications
that store their data in unencrypted files using unknown file formats. With additional
work, the process this research defines can be used to identify unknown file formats
of applications executing on other mobile architectures.

The process developed is called ADSS (Automated Data Structure Slayer); the
first automated reverse engineering tool that programmatically integrates dynamic
and static taint analysis, tracks tainted data through the application and native layers,
and determines unknown file formats for Android applications. ADSS automatically
hooks the necessary application methods to develop an object-to-data legend that
links the application data structures to areas in the file. With minimal effort from
the forensic examiner, ADSS identifies the file format (i.e. the byte-level offsets of
evidentiary data in the analyzed file).

ADSS speeds the development of tools to parse and extract data from these oth-
erwise unknown file types. ADSS successfully determines the format of files with
forensic evidentiary data used by the Android applications Uber (v4.208.10003) and
Discord (v6.6.1). The file formats were verified by extracting data from a second

device.

www.manaraa.com

1.3 Summary

This dissertation introduces the Android Operating System (OS). It then details
the forensic problem of data reverse engineering research for mobile applications.
Next, it summarizes related reverse engineering techniques. It then discusses Auto-
mated Data Structure Slayer (ADSS). Finally, it provides results from running ADSS

on the Android applications Uber and Discord.

www.manharaa.com

II. Background

This chapter provides context for how an application executes in the Android
Operating System. Understanding how the application interacts with virtual and
native resources during execution to process, store, and collect user data is essential
to implementing a methodology to discover unknown file formats used by Android
applications. Monitoring the data from user input and processing on the device are
the early steps to determining how it is stored on the filesystem. Then the examiner
can reverse the data from the file to extract evidentiary information from the user.

This chapter covers Android internals to show how mobile applications interact
with the operating system resources to store, process, and disseminate application
data. To determine file access behaviors for a given application, the first part of this
chapter provides a foundational overview of how applications interact with system
resources. This understanding is necessary for Chapters 4 and 5, which presents de-
tails on the ADSS’ process of monitoring an application and how it allocates memory
to hold user information before writing data to the filesystem. This chapter con-
cludes with a summary of current mobile application reverse engineering techniques

for static and dynamic analysis.

2.1 Android Primer

This section discusses Android — its early origins with Unix, the operating system
architecture, and the internal designs. Other books can be referenced that provide
more detail into Android internals; the purpose of this section is to provide context
before discussion on advanced reverse engineering techniques employed by ADSS.
The end goal is to show relationships between existing reverse engineering techniques

to understand how an application interacts with its resources in the Android OS to

www.manaraa.com

decipher complex file storage behaviors.

History.

Since Android’s acquisition by Google in 2005, the open-source and high availabil-
ity of the embedded operating system has consistently increased in popularity among
mobile users worldwide [33], even surpassing the Apple iPhone purchase metrics in
2015 [34]. Google employed a radically different marketing strategy for Android than
the other leading device manufactures at the time — specifically by fostering an open-
source product (Google Play Services and vendor specific drivers are proprietary [35])
that can be employed across a variety of devices, independent of manufactures and
cell phone carriers [33].

The Android OS branched from the Unix OS; in 2010, Android departed from the
vanilla Linux Kernel due to the power and resource limitations of embedded devices.
In 2012, Android and Linux communities agreed to sync both kernel baselines [36];
as of this writing, there still exists differences between both baselines. Specifically,
Android lacks a native windowing system, glibc support, and the standard set of
Linux libraries. At the kernel level, Android enhances the baseline with Alarm,
Ashmem, Binder, Power Management, Low Memory Killer, Kernel Debugger, and
Logger subsystems [37]. The historical Linux underpinnings allow a researcher to

utilize some Linux-specific reverse-engineering and analysis techniques on Android.

www.manaraa.com

Architecture.

applications

library routines shell

system calls
kernel

Figure 1. The architecture of the Unix OS [1].

Android maintains a split privilege of execution levels between user and kernel
space. Figure 1 shows a high level view of this privilege model. The kernel manages
access to the hardware resources for the user-level applications during execution.
Kernel level code, meant to be fast and efficient, is smaller in size and contains
more permissions than the user-level applications. Applications provide users with
the experience they are accustomed to when using an Android phone. The shell is
a text-based command language interpreter that executes commands from the user

[38).

Internals.

The Android OS environment is organized into several layers of abstraction that
operate above the kernel. At the top of Figure 2 sits the Applications, processes that

users can launch on their phones.

www.manharaa.com

Applications
Frameworks
Native
VM JNI Binaries
Native Libraries |
Bionic HAL
Linux Kernel
Hardware

Figure 2. The architecture of Android OS [2].

Developers can write Android applications in either Java-like code, native code
(C/C++), or a hybrid of both [39]. Android provides two different environments
that support application execution: Android Virtual Machine (AVM) and Native
layer . The Virtual Machine (VM) executes files in the Dalvik Executable (DEX) or
the Optimized Dalvik EXcutable file (ODEX) format, depending on what version of
Android is running. Android 4.0 or higher executes with Android RunTime (ART),
while lower versions of Android execute with the Dalvik environment. Inside the VM,
applications have access to a repository of code that mirrors the libraries available
to Java applications, with the difference lying in the underlying implementation of
the runtime environment. Android implemented the VM as register-based, and runs
classes compiled by the dx tool, a Java language compiler that transforms source files
into the .dex format [40] [39], while the Java VM is stack-based. The Native layer
allows execution of applications developed in C/C++ and does not require a VM
[41]. Applications can access the Native Libraries via the Java Native Interface (JNI)
[1]. Having native and virtual machine resources allows developers to design complex
applications written in either Java-syntax, C/C++, or both. The Frameworks layer

provide programs that manage the basic functions of the phone, such as resources,

www.manaraa.com

voice, activities, locations, etc. [42]. Continuing downward in Figure 2, the Native
Libraries layer provide the standard linux open source libraries via the Android VM
or the JNI interfaces. Google modified and customized the standard libc library
for use in a mobile environment, which is known as Bionic [37]. Next is the Linux
Kernel followed by hardware components on the mobile device. Lastly, the Hardware
Abstraction Layer (HAL) is a standard interface which allows vendors to standardize

device specifications and drivers [37].

2.2 How Applications Work

This section provides an overview of Android applications. It discusses their
development, execution, and interaction with the filesystem. This primer is essential
to understand in order to grasp the concepts presented in the following chapters.
One must first understand how applications are intended to behave before making
modifications to uncover how and where they store data to the filesystem.

Figure 3 shows the lifecycle of an application and serves as a blueprint for this
section. This section first discusses the major components of an Android Applica-
tion Package (APK), then shows the application installation process, discusses the
Executable and Linker Format (ELF), and then concludes with how the application

process executes within its respective virtual machine.

10

www.manaraa.com

Resources
& Native Code

Dex File(s) 2P APK

install

y
Dex File(s) Resources

& Native Code

dexopt dex2oat

<
> | - -
< | 1 ! <
o ‘ | |
. ,
\ VM \ \ Native VM -» Native
4 y A

Libraries |

Figure 3. Life of an APK [3].

Architecture.

Source Dex File(s)

Resources zip
& Native Code @

Figure 4. APK creation.

Figure 4 shows the creation stage of the APK lifecycle. The source code of an An-

droid application can be written using three different methods: Android Development

11

www.manaraa.com

Kit (using Java-syntax), Android Native Development Kit (C/C++), or scripting lan-
guages (Perl, Python, Lua, Ruby, Beanshell, JavScript, Rhino,Tcl, Rexx) [43] [37].
Typically, application developers rely on Android or other third party libraries for
their applications as this saves development time, promotes code reuse, and improves
reliability. The benefit of writing code in C/C++ is mainly performance; this is for
gaming developers who want to squeeze every ounce of power and efficiency from the
mobile device [37].

Developers can use Android Studio or another platform to build the APK from
the source files. The dex files serve as an intermediary step, transparent to the
developers, in which the source code is compiled into bytecode to execute within the
Android virtual machine. Source code with more than 65K unique function calls and
declared class fields require multiple dex files [44]. These dex files, with resources and

native code, are compressed into the APK.

META-INF/ MANIFEST.MF
—— CERT_NAME.(RSA|DSA)
CERT_NAME.SF
lib/ armeabi(v-7a)/ lib*.s0
arm64-v8a/
™ X86
mips
—» assets/ *
—» AndroidManifest.xml
res/ drawable-*/ *.png
xml/ * xml
raw/
™ x86
mips
—¥ classes.dex
—» resources.arxc

Figure 5. Android APK hierarcy [4].

12

www.manaraa.com

Figure 5 shows in more detail the components of an APK. Within the ‘META-
INF’ folder, there exists the MANIFEST.MF file, self-signed certificates, and the
developers public signature and additional miscellaneous information. The ‘lib’ folder
contains native Executable and Linker Format (ELF) binaries that the application
calls upon during execution. The ‘res’ folder contains resources such as Activity
layouts, pictures, music files, etc. in the Extensible Markup Language (XML) format.
The ‘assets’ folder contains raw files that are loaded via the AssetManager during the
application lifecycle process. The AndroidManifest.xml file is the entry point for
the application. It annotates the application’s metadata, required permissions, used
Intents, Activities, Receivers, and Services. The ‘classes.dex’ file contains executable
bytecode that is run in the Android virtual machine. The ‘resources.arsc’ file is the
compiled Android resource file. The final types of files in the package are shared object
compiled libraries; these are native C/C++ compiled files that execute directly on

the processor [4].

Dex File(s)

Resources zZip |
& Native Code * APK
install
A
Dex File(s) |
dexopt dex2oat

Ode;(File E FvFiIe

Figure 6. Android APK installation.

Figure 6 diagrams the installation process for the APK. This step decompresses

13

www.manaraa.com

an APK and the resultant dex files pass through dexopt or dex2oat, depending
on if the Android version supports ART or Dalvic virtual execution environments.
ART provides additional optimizations over Dalvik and is compatible with Dalvik’s
bytecode format. The performance increase of using ART over Dalvik is because
dex2oat compiles the dex files into native code (ELF executable binaries) before the
application executes, whereas Dalvik provides a just-in-time compilation via dexopt
3].

This research focuses on Applications executing on Android 4.0 or higher, which
uses the ELF fileformat. ELF is an extensible file execution format that provides a
common set of standards that hardware vendors must adhere to, but at the same
time allow hardware vendors to provide implementations that are specific to their

architectural platform.

Linking View Execution View

ELF Header

Program header
table (optional)

Section 1

Section n

Section header
table (required)

ELF Header

Program header
table (optional)

Segment 1

Segment 2

Segment 3

Section header
table (optional)

Figure 7. ELF during linking and execution views [5].

As shown in Figure 7, an ELF executable consists of several components. During
program linking, the file is divided into different sections with a header table at the
bottom or at the top. The header table is a lookup index for accessing a particular

section. There are over thirty different types of sections that could be contained in

14

www.manaraa.com

an ELF file. The most relevant sections of the research include:

e .bss: Global variables and static variables that are initialized to zero or do

not have explicit initialization in source code.

e .data: initialized data that contribute to the program’s memory image.

e .dynamic: dynamic linking information.

e .dynstr: strings needed for dynamic linking, usually the names associated

with symbol table entries.

e .dynsym: the dynamic linking table

e . fini: executable instructions that contribute to the process termination code.

.got: global offset table

e .init: process initialization code. This code is run first when the executable

starts.

e .iterp: name of the program interpreter.

.plt: procedural linkage table

.symtab: static symbol table

e .text: executable instructions for the program.

15

www.manharaa.com

Execution.

ELFFile | -

DALVIK
ART

| |
| ! I
| 1 |
i ‘ \

I
I
I
| i
v . | :
| Dalvik | | Native ART) Native

Libraries

i

Figure 8. Application executing.

An Android application consists of one or more processes that execute within
the operating system. Figure 8 provides an overview showing Android’s executable
file format (Odex, ELF) running within the respective virtual machine. When a
process executes, it accesses hardware resources (memory, Central Processing Unit
(CPU), other components) via libraries or directly via system calls into the kernel.
An application can be as sophisticated as a game or as simple as an executable that
prints “Hello World” to the screen.

This section discusses how processes access resources within Android. The first
half of this section discusses native process execution and the second half covers show
how processes allocate memory within the android virtual machine. It is important
to understand the basics of process execution before applying hooks and monitoring
filesystem interaction to reverse engineer how an application stores user data to the
filesystem.

Calling exec () (system call), Android runs an executable file within the context
of the process that started the application. The CPU fetches and executes the native
processors’ instructions. Typically there are multiple processes executing and vying

for CPU time, so the operating system employs a scheduler that manages which

16

www.manaraa.com

processes get to execute their code on the CPU; sometimes a process needs to wait
until a device becomes available (for example reading or writing data to the filesystem)
and if another process is ready to execute, then the scheduler saves the context of the
waiting process and then load the context of the ready-to-execute process. This way,
CPU resources are efficiently employed.

In order to allow for code reuse and provide more flexible options for developers
to execute common programming tasks, a corpus of common functions are gathered
together and made available to programmers to call; these are commonly referred to
as libraries. Android applications bind to libraries either statically or dynamically.
During static binding, all library function references are resolved before program
execution and the library file links to the binary executable before program execu-
tion. The consequence is a larger binary file but also allows for increased application
portability — the program executes regardless of if the host operating system has the
required libraries. If not statically bound, Android applications can dynamically link
to a shared object library at execution. The decision occurs during the application
build phase, where the linker neglects the dynamic library’s symbols and does not
perform checks of the sections (.bss, .text, or .data); instead it checks if the
dynamic library contains the symbols needed by the binary. If it finds them, then the

linker creates the executable. This is illustrated in Figure 9.

= ()

source files object files -
shared library

shared library

Figure 9. Building with a shared library [6].

17

www.manaraa.com

If dynamically bound to a shared object, then the Android loader locates the
shared library, loads it into the process, and then maps the function addresses from
the binary executable to where the library has been mapped to in memory. This is
the stage where the shared library segments are integrated into the resultant binary
right before execution. The dynamic library loaded at run time must have the same
symbols that were generated at build time. The function name signatures (i.e. name,
number of arguments, type of arguments, and return values) must be identical to
what was generated throughout the build process. Figure 10 illustrates the load time

linking process.

Process-specific
data structures

Process-specific
data structures

User Stack

. Physical Memory

Figure 10. Load time linking of a dynamic library [6].

Different types of memory resources are available to the processor as it executes a

processors ’ instructions. Registers, due to their proximity to the processor, provide

18

www.manharaa.com

the fastest means to read and write data, but tend to be limited in storage capacity.
System Random Access Memory (SRAM) has slower read and write times, but has
larger capacity for storage than registers. The filesytem has the slowest read and
write speeds, but provides the largest capacity for long-term storage.

Android carves out a section of memory (SRAM) for the running process [45]. At
a higher level address, and typically growing down, is the stack. The stack implic-
itly stores local variables, temporary information, function parameters, and return
addresses that are associated with the running process. The heap allocates dynamic
memory for use in the process when certain C/C++ language calls are made, such as
calloc (), malloc (), realloc, and new (). Deallocation occurs after evoking
new and delete. Opposite the stack, the heap grows upwards and holds objects or
static variables [7] [6] [1]. Below the heap are the .text, .data, and .bss data
that were part of the executed ELF file. Between the heap and the stack is shared
memory, where functions from dynamically linked libraries are loaded. In addition to
the userspace memory stack, a process has its own kernel space stack. This is an area
of memory that program execution jumps to when a system call has been executed or
other privileged code is run [45]. Figure 11 illustrates these areas as a native process

uses memory during execution [6].

19

www.manharaa.com

Higher Memory Addresses
A

stack
|
|
|

v

shared
memory

A
|
|

User

heap
text
data
bss

> <

Kernel

OS kernel

v

Lower Memory Addresses

Figure 11. Native application running in memory [7].

The kernel allocates specific data structures during process execution. Every
process is identified by the task_struct structure, which Figure 12 illustrates. This
structure has several fields, but the most notable are mm_struct, the outline of the

process in memory, pid_t pid, which holds the process ID, and char comm[16],

which stores the text description of the process.

20

www.manharaa.com

task_struct

struct mm_struct *mm, *active_mm;
char comm[16];
pid_t pid;

mm_struct

struct vm_area_struct * mmap;
struct rb_root mm_rb;

struct vm_area_struct * mmap_cache;

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack;

vm_area_struct

struct mm_struct * vm_mm;
unsigned long vm_start;
unsigned long vm_end;

struct vm_area_struct *vm_next;

struct file *vm_file;

Figure 12. Kernel structures associated with a process [8].

The mm_struct is further composed of several virtual memory area structures,
shown in Figure 13. Each shared library is mapped to one of these vm_area_struct.
The heap, stack and the different components of the executing ELF file(.bss,,

.data, .text) map to a vm_area_struct.

21

www.manharaa.com

struct file
/lib/

vm_area_struct
VM_READ | VM_WRITE
| VM_GROWS_DOWN

vm_next

struct file
/lib/

vm_area_struct
VM_READ | VM_EXEC

vm_next

vm_area_struct

VM_READ | VM_EXEC |

vm_next

vm_area_struct

VM_READ | VM_WRITE |

vm_next

Struct file
/bin/

<'

vm_area_struct

VM_READ | VM_WRITE

vm_next

vm_area_struct
VM_READ | VM_WRITE

vm_next

vm_area_struct
VM_READ

VM_EXEC

4

mmap

task_struct

Figure 13. Process segments mapped to memory [8].

» mm_struct

stack
(anonymous)

Memory
mapping

Heap
(anonymous)

BSS
(anonymous)

Data
(file-backed)

Text
(file-backed)

As previously mentioned, the .text area stores the executable instructions for

the program. The .bss section stores the global and static variables that are ini-

tialized to zero and are not explicitly initialized in source code. Finally, the .data

area stores any global or static variables which have a pre-defined value and can be

modified. The heap, growing upward, contains dynamically allocated memory from

C/C++ functions such as malloc (), calloc (), new(), realloc().

The .dy-

namic sections holds dynamic linking information, the .dynstr section stores strings

that support dynamic linking (i.e. the strings that represent the names associated

22

www.manaraa.com

with symbol table entries). The .dynsym section stores the dynamic linking symbol
table.

In order to provide sufficient resources to a process and to present more memory
than may be available physically [9], Android utilizes virtual memory. The operating
system shares common resources between processes and utilizes demand paging, which
gives processes just in time access to needed resources while storing less frequently
accessed resources to the filesystem. As a processor executes instructions it fetchs
data stored in memory locations, depending on the particular instruction that it is
executing. In a virtual memory environment, the processor has access to a table that
provides a relationship between virtual pages and the physical pages in memory. Each
of these pages has a unique number and can be referenced via a Page Frame Number
(PFN). In the abstract virtual memory diagram, Figure 14 shows two processes and
their respective page tables that provide a translation from a virtual page to a physical
page in memory. There is additional information in the page table such as a valid
flag, access permission details (read, write, etc.), and the physical page entry that the
virtual page refers to. If the process accesses a virtual address for which there is no
valid translation to a physical page, then a page fault is generated. For example, there
is no entry in process A’s page table for VPFN 2; if process A attempts to read from
an address within this Virtual Page Frame Number (VPFN), a page fault occurs. If
the virtual address is valid but the referrrenced page is not in memory, the operating
system loads the appropriate page into memory from disk. As a process needs further
access to valid data that has not been loaded into virtual memory, continued page
faults occur and they are loaded just in time. This iterative process is referred to as

Demand Paging [9].

23

www.manaraa.com

Process A Process B

Process A Page Process B Page
Tables Tables

Virtual ; Virtual
Memory Physical Memory Memory

Figure 14. High Level view of Linux virtual memory [9].

Application flow jumps around to various locations in the process code via the use
of CPU registers and operating system pointers. The format, syntax of CPU instruc-
tions and the number of registers available are architectural specific and defined by the
processor Application Binary Interface (ABI). The ARM 64 bit processor, consistent
with the AARCHG64 specification, provides thirty-one 64-bit general-purpose registers
accessible at all times and in all exception levels. These are referred to as registers
X0-X30. ARM64 is the processor in the Nexus 6P, the device used for research in this
prospectus. Each 64 bit register can also be used as a 32 bit register to support 32 bit
applications. The 32-bit W register forms the lower half of the corresponding 64-bit
X register. Table 1 shows how Android stores primitive C types in the AARCHG64
registers. In addition to the general purpose registers, AARCHG64 uses several special

purpose registers, as shown in Figure 15 [10].

24

www.manharaa.com

Table 1. Variable width for registers for AARCHG64 used by 64 bit Android OS [10].

type Size in bits
char 8
short 16
int 32
long 64
long long 64
size_t 64
pointers 64
Zero Register XZR/WZR
Program Counter PC
Stack pointer SP_ELO SP_EL1 SP_EL2 SP_EL3
Program Status Register SPSR_EL1 SPSR_EL2 SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
ELO EL1 EL2 EL3

Figure 15. ARM AARCHG64 Special Registers [10].

Memory Allocation.

A hybrid application, one which uses resources in the AVM and native libraries,
can have complex process heaps and stacks within the virtual environment and the
native process environment. Understanding how applications use and process data
prior to long-term storage in the filesystem is the first step toward understanding
application custom fileformats. These hybrid applications utilize the JNI Bridge to
call APIs depending on what mode is executing. This bridge allows for a process

executing within the AVM to call native library APIs for for native code to access

25

www.manaraa.com

APIs defined in the AVM. The libnativehelper. so library facilitates these JNI
calls [33]. Because the Android Runtime environment is similar to the Java Runtime
Environment, understanding how Java allocates memory on the stack and heap is
essential to understanding how Android applications allocate memory on the heap
and stack.

Pankaj’s Java Heap Space vs Stack Memory Allocation in Java [11] shows how
objects are allocated in the Java VM heap during a function call. The Java Stack
memory is used during the execution of a thread and stores references to objects
that have been allocated on the heap. It is when objects on the heap have no more
references to them from a process’ thread that a Garbage Collector deallocates that
object, or rather frees the space in the heap for future allocations [46][47]. Consistent
with the native process implementation of a stack, this memory structure is LIFO,
which means that when a method call occurs, a new block is created in the stack
memory for the method to hold local primitive values and reference to other objects
in the method.

Listing II.1 is a simple class defined in Java that creates a primitive type i, two

objects of type Object and Memory, and makes a function call to foo.

26

www.manharaa.com

//Example taken directly from:
// http://www.journaldev.com/4098/ java-heap-space-vs—-stack-
memory

N —

3 package com. journaldev.test;

4

5 public class Memory

6 {

7 public static void main (String[] args)
8 {

9 int i=1;

10 Object obj = new Object () ;

11 Memory mem = new Memory () ;

12 mem. foo (obj) ;

13 }

14

15 private void foo (Object param)

16 {

17 String str = param.toString () ;
18 System.out .println (str) ;

19 }

20 '}

Listing II.1. Memory allocation example.

Figure 16 shows the memory layout of the process in both the heap and the stack.
The objects are allocated in the heap and the contents of the primitive types are in the
stack. This is conceptually a similar memory layout to how an Android application

would store its primitives and objects during program execution.

Stack Memory Heap Memory

str -«——|

param <—|
> Java.lang.Object@579a19fd

foo() 4
mem -q—
. Memory .
obj - toString()
inti=1
main() object

Figure 16. Java Heap and Stack space example [11].

27

www.manharaa.com

Filesystem Interaction.

This section provides an overview of how applications store data to the filesystem.
Android permits applications to store data to either the internal or external storage
of a device. External refers to removable media such as a microSD card but for
devices that do not support external media, external refers to a logical partition of
the primary storage. Android divides the internal filesystem into directories, with
each one holding data from a specific application. Android security measures ensure
only the application can access the data under its respective folder. Due to this
security policy, developers design applications to store the sensitive data under the
internal filesystem. On the other hand, Android allows application to store data
anywhere in the external filesystem.

There are no restrictions on the structure of the data an application stores to the
filesystem. Android allows applications to store private data in SQLite databases;
this is a popular method for storing internal data for an application [48]. The struc-
ture SQL provides allows for forensic tools to easily parse and view the information
using tools such as sqlitebrowser. However, applications can write the data to the
tables of the database in any format — which means that table fields can contain
encrypted, obfuscated, or raw data in the Binary Large OBject (BLOB) format [49]
— this makes data extraction non-trivial. Other third party storage options exist that
an application can use to store data such as Kryo [50]. This uses a custom Java object
serialization process to store application objects to files using a key-value format[50].
Other non-trival file formats include use of SQL Cipher [51], an open source project
that encrypts the database when not in use. Moreover, an application can use system
calls or other methods to directly write data to plain files wit any custom file format.

In summary, there are many different ways to store application data with the only

restriction being that an application can only store data within its respective internal

28

www.manaraa.com

storage folder.

2.3 Reverse Engineering

Most developers do not make their source code public and thus analyzing an
application’s inner workings via reverse engineering is the only way to determine
how and where an applications stores data to the filesystem. This section explores
the common techniques available for statically and dynamically reverse engineering
an application. The first half is devoted to static analysis techniques followed by a
discussion of dynamic reversing techniques.

Traditional differences between dynamic and static program analysis still hold
true when applied to mobile applications: analysis of a program that is performed
with and without program execution, respectively [52]. For the scope of this paper,
static reverse engineering refers to analyzing a mobile application without running
the application and dynamic reverse engineering refers to analyzing an application’s

behavior during execution.

Static Techniques.

Static reverse engineering provides the examiner with knowledge of the layout
of the application without execution [52]. This includes translating binary machine
code into disassembly or abstracting disassembly into a higher level programming lan-
guage [53]. With regard to Android applications, this section divides static reverse
engineering into five steps: Access, Unpacking, Dissimilation, Building, and Signing.
The following paragraphs discuss the goals of each step and provide available tech-

niques to accomplish the respective step’s objectives.

29

www.manaraa.com

1. Access

The first step is to gain access to the application to analyze. www.apkpure.com
and similar sites that mirror the Google Play Store provide a way to download
application files without requiring a mobile device. If a mobile device is avail-
able, an examiner can retrieve the application directly from the phone via the
Android Debug Bridge (ADB) [54]. This method requires elevated root level
access [b5]; it allows the examiner to interact with the phone’s filesystem and

pull the application from the phone to a computer for further analysis.

2. Unpacking

After acquiring the APK, the examiner decompresses it to expose the underlying
files and first level structure. Android uses the ZLIB [56] compressed package
file format for distribution and installation of mobile applications. ApkTool
[57], IDAPro [58], and standard operating system decompression tools such as

unzip [39] can unpack the APK.

3. Dissimilation

An examiner may disassemble or decompile the unpacked .dex file(s). Both
ways break up the .dex file(s) into understandable pieces of information, and
help the reverse engineer better understand the inner workings of the applica-
tion. The first method disassembles the . dex file(s) into Smali [59] code. Smali
is an intermediary-register-based language between source and the decompiler
which converts bytecode into Smali. BakSmali converts Smali back into byte-
code that is represented in a . dex file [4] [59]. The Smali language provides the
examiner with low-level access to how the application uses registers, memory
locations, strings, methods, classes, etc within the Android Virtual Machine.

An Android application can be disassembled into Smali and then reassembled

30

www.manaraa.com

back into the dex file using BakSmali or ApkTool.

Other tools, such as jadx, can decompile bytecode into a high level language to
get the code as close to original source as possible. One can read this source
code using a Java Integrated Development Environment (IDE). Viewing high
level source is easier to understand the logic and flow of the program than
analyzing lower level assembly / Smali for the reverse engineer. Unfortunately,
some information is lost during the decompilation process, and thus it is not
possible to return from decompiled code to a functioning bytecode in the same
way that BakSmali can re-assembled the Smali files[39]. Other tools that can

perform decompilation include JEB, IDA Pro, and DAD [39] [4].

4. Building
During this phase, the examiner reassembles the Smali and other files back into
an APK package using ApkTool or BakSmali.

5. Signing

During this phase, the APK package can be signed using Java jarsigner.

Dynamic Techniques.

Static reversing only provides information about an application, but it is the pro-
cess of watching how and when the application writes to the filesystem that yields
progress toward uncovering the closed-source-file formats. Dynamic reverse engineer-
ing allows an examiner to monitor how an application interacts with the operating
system resources while it is running [52]. This section provides an overview of several
dynamic reverse engineering techniques for Android applications.

One technique, Dynamic Binary Instrumentation (DBI), allows a reverse engineer

to inject custom code inside of a running process with a technique called library

31

www.manaraa.com

injection [60]. Collin [61] relies on a standard Linux debugger, ptrace, to monitor
the execution of a process and then when a process loads a library the system injects
a custom library in its place. This technique allows for the researcher to inject custom
code into the process space of the analyzed application. This injected code can be
used to dump the stack trace, show the objects that the current thread allocated in
memory during program execution. Many things can be done by injecting code into
a running process; it is this technique that the future chapters continue to develop.

Another technique is to analyze how an application behaves with other appli-
cations. Applications can communicate to other installed applications using four
different methods: passing intents, accesing content provided by another application,
accessing broadcast receivers/events, and using a service exported by another appli-
cation [62]. Drozer [63], a security tool that dynamically interacts with an application
using a command like interface, deploys a custom application (ie the Agent) that al-
lows the examiner to communicate with the targeted application via the agent. The
examiner can send intents [64], access broadcast receivers/events, services, and other
content available by the targeted application. This method allows the examiner to
analyze the behavior of the application with neighboring applications.

The final method, taint tracking, observes differences in network traffic, data
stores, or other activities by inserting a tag into the transferred data that allows
monitoring to occur through the appropriate processes, system, or application com-
ponents. Based on the examiner’s objective, tainting can be applied at different
levels to achieve different results: operating system, execution language, and the
source code [65]. Dynamic taint tracking is most revealing the closer it is applied
to the information that the reverser wants to observe. Bell and Kaiser [65] devel-
oped a Java-generalized taint tracking engine, Phospor [65], which can be applied

to taint an Android’s application as it interacts with the underlying Dalvik virtual

32

www.manaraa.com

Machine. TaintDroid [66] modifies the Android OS source code to taint private user
information that may be leaked during an application’s usage. Droit [67] performs
taint analysis at the binary and Dalvik virtual machine layer of the Android OS by
monitoring ARM instructions emulated by QEMU. Similarly to TaintDroid, it heavily
modifies the AOSP source code. Finally, ARTDroid [68] is a research endeavor that
provides a framework for hooking virtual method calls supported in the ART envi-
ronment. Although it is not a taint tracking engine exactly, it does provide dynamic
execution flow techniques that can be used to monitor how an application behaves
in the ART virtual machine without incurring performance penalties associated with
instrumenting the application’s Java bytecode.

This chapter provided a foundation for the reader to understand how applications
are loaded, executed, and interact with the Android OS. Moreover, this chapter dis-

cussed the reverse engineering techniques currently available to provide static and

dynamic analysis.

33

www.manharaa.com

ITI. Related Work

This chapter provides a summary of related work that support identifying the file
formats of closed source applications. Related works that completely encompass the
scope of this topic exclusively for Android applications are scarce, however there are
research papers which support different subset-areas of this research.

The chapter first presents static analysis of binary executables. Following, it
summarizes works to show dynamic data flow analysis using taint tracking or method
call hooking in a virtual machine. With this understanding, the next section details
type tracing in a purely native execution environment. This chapter concludes with
research showing the integration of both dynamic and static analysis to monitor code

execution and to determine data structures.

3.1 Static Analysis of Binary Executables

Static techniques exist to extract data structures from a binary executable. One,
CodeSurfer x86 [69], uses Value Set Analysis [70] to recover intermediate represen-
tations that a compiler could generate from an application developed in a higher
programming language [69]. CodeSurfer x86 is a system that interfaces with the
binary disassmbled code via an IDA Pro plugin called Connector. Connector uses
the IDA Pro API to access the call graph, static memory address, calls to library
functions, and procedural boundaries. This data is then pushed into a Value Set
Analysis (VSA) [71] [70] algorithm. According to [69], ‘VSA is a combined numeric
and pointer-analysis algorithm that determines an over-approximation of the set of
numeric values or addresses that each abstract location holds at each program point.
The set of addresses and numeric values is referred to as a value-set. A key feature

of VSA is that it tracks integer-valued and address-valued quantities simultaneously.’

34

www.manaraa.com

CodeSurfer takes this data and generates dependency graphs that aid in static anal-
ysis: Control Flow Graphs, System Dependence Graphs, and Procedural Dependent
Graphs. These dependency graphs help determine instructions that are dependent
upon each other but may not be juxtaposed to one another. [69].

File-Format Extractor for x86 (FFEx86) [72] is a static analysis system that builds
upon the work from CodeSurfer x86. This project uses VSA and Agregate Structure
Identification to annotate Hierarchical Finite State Machine (HFSM) that is used to
partially characterize some of the binary executable output data values.

FFEx86 reviewed the source code from common Linux programs (gzip, png2ico,
compress95, tar, and cpio) and categorized that these programs write to disk in either
a bulk or an individual manner. Individual writes can be conducted using Standard
Input Output (I0) functions such as fputs or fputc or by using wrapper functions
(i.e. custom write functions that would write individual bytes of data). During a
bulk write, the programmer develops a structure with custom headers, data sections,
and additional fields; after construction the entire structure is written to disk at the
same time.

The FFEx86 system analyzes the dissasembled code from the IDA Pro Connector
plugin (part of CodeSurfer x86) and classifies all output functions (ie wrapper func-
tions or calls to these functions that generate output data) as an FSM. FFEVx86 then
creates a redacted interprocedural control-flow graph (or an HFSM) to characterize
enterance nodes, exit nodes, call nodes, and all output operations [72]. According to
the researchers, the HFSM greatly reduces the complexity of a full call graph of the
targeted executable.

FFEVx86 relies heavily upon CodeSurfer x86 ASI and VSA in order to associate
structures with FSM data outputs and determine output data structures. FFEx86

does this by over approximating the output file format from the program’s specifi-

35

www.manaraa.com

cation, rather than producing an exact copy of the output data structures — ie the
language of the outcome is a superset of the output language of the executable being
analyzed [72].

FFEVx86 was successfully evaluated against three open source Linux programs
(gzip, png2ico, and ping) and even determined a discrepancy between the documented
output for png2ico and the actual output file structure [72]. Limitations of FFEX86
include limited architecture support (ie only for x86), testing against a small set of
programs, and only evaluating output operations without considering input opera-
tions [72].

These static analysis techniques are limited to the x86 architecture. Also, they are
unable to monitor how executed code interacts with the operating system via system
calls or dynamic function calls. Furthermore, static analysis is unable to characterize
the data structures stored in memory during execution (dynamic, conditional, or

simple structures).

3.2 Virtual Machine Data Flow Analysis

Based on the research from Bell and Kaiser [65] and their development of Phos-
phor, a general purpose taint tracking engine that can be deployed against a variety
of Java Virtual Machines, they categorize taint tracking engines into monitoring en-
vironments that taint data at different levels: operating system, execution language,
and the source code. Bell and Kaiser observed that traditional techniques for dynamic
taint tracking reveal more relevant information the closer to the source code the data
is tainted. The Phosphor taint tracking engine was designed to be portable across
multiple architectures that implemented the Java Virtual Machine.

Phosphor relies upon ASM [73] to instrument the application’s Java bytecode,

keeping track of the variables accessed by storing a tag for every variable and each

36

www.manaraa.com

derived variable during the execution of the program. This research is applicable to-
ward enhanced debugging, end-user privacy testing, and data security. [66] Phosphor
is efficient and portable and requires no modifications to the Java Virtual Machine
(except in the case of Android’s Dalvik in which minimal modification occurs); it has
been tested against a variety of Java Virtual Machine instantiations, such as IcedTea,
openjdk, and Android’s Dalvik virtual machine. Phosphor limitations include only
tracking dynamic flow and not control flow; implicit data operations are not tracked,
only explicit operations. In addition, Phosphor is limited to the confines of the Java
Virtual Machine and does not taint variables during native execution. [66]
TaintDroid is a long standing open source project designed to identify private
user information that may be leaked during an application’s usage. Specifically, Taint-
Droid’s project objectives are to monitor location, camera, and microphone user data.
Differing from Phosphor, Taintdroid makes many modifications to the Android Op-
erating System source code that explicitly taints application data as it executes and
uses operating system resources. This extensive amount of work [66] (over 32,000
new lines of code; 18,000 are in assembly and 10,661 are in C) lends itself to be a
big project that must be routinely updated to maintain relevance as Alphabet re-
leases new Android operating systems and patches. Similar to Phosphor, Taintdroid
instruments the application’s Dalvik bytecode to monitor variables during program
execution. However, TaintDroid also monitors interprocess communcations between
applications by hooking the Binder Class, which is specific to Android. Although
TaintDroid only performs variable tainting at the bytecode level, it does perform
method-level tainting, which means that it monitors the input and return type for
native library functions. Moreover, TaintDroid taints the information being read and
written to the SMS and Addressbook databases. Lastly, TaintDroid identifies when

tainted data exits on the network interface by monitoring the Java framework libraries

37

www.manaraa.com

at the point the network socket is invoked [66].

Droit [67] performs taint analysis at the binary and Dalvik virtual machine layer
of the Android OS by monitoring ARM instructions emulated by QEMU. QEMU [74]
is an open source processor emulator that is utilized as the emulator for the Android
Operating System. Droit is able to dynamically switch monitoring between java
objects and native code instructions. Droit bases its monitoring of J ava bytecode
on how TaintDroid works by heavily modifying the Android OS source code. It
complements this dynamic analysis by also analyzing the QEMU simulated ARM
instructions that execute when native code runs. This is a heavy weight solution, but
does allow Droit to analyze the behavior of sophistical malware that attempts to hide
its actions by running native code.

ARTDroid [68] is a research endeavor that provides a framework for hooking
virtual method calls supported in the Android RunTime environment. Although
it is not a taint tracking engine exactly, it does provide dynamic execution flow
techniques that can be used to monitor how an application behaves in the ART virtual
machine without incurring performance penalties associated with instrumenting the
application’s java bytecode. The concept behind ARTDroid is to utilize the virtual
method table (vtable) to modify virtual method execution, in essence hooking the
virtual method calls in the ART Runtime Environment. ARTDroid allows one to
dynamically discover what java framework APIs are being called by an application

and dynamically hook each call to execute your own code.

3.3 Native Data Flow Analysis

Moving out of the virtual machine/interpreter and into native code dynamic anal-
ysis, Tupni [75] automatically reverse engineers an input format. Although it is not

specific to Android, it does provide necessary intelligent analysis of data flow at the

38

www.manaraa.com

native execution level, something that ARTDroid, TaintDroid, and Phosphor fail to
provide and analyze. The researchers analyzed 10 different media file formats and
determined that they store data in arbitrary sequences of chunks [75]. The tool relies
on iDNA [76] to dynamically trace the code execution and a taint tracking engine to
associate data structures with addresses in the application’s address space and up-
date them as the application executes. With this information, the tool tracks fields,
record sequences, and sequence of records used in file storage. This approach allows
for monitoring at byte level addressing.

The basic algorithm of Tupni first identifies fields, then identifies record sequences,
and finally identifies record types [75]. This approach is consistent with Lim’s paper
Extracting Output Formats from Executables [72] in which they expect a formatted
file header followed by a chunk or chunks of data. Tupni identifies all field chunks in
the execution trace by stepping through each instruction and monitoring the bytes as
they are read by the application [75]. The tool assigns a weight to each chunk that
represents the total number of time that an instruction has accessed that particular
byte or bytes. This process is specific to x86 architecture and allows it to identify 8,
16, 32, 64 bit integer operands and floating point chunks [75].

Tupni [75] identifies record sequences by assuming that all applications have to
use recursive calls or looping to process sequences of records. Tupni specifically looks
for the case of loops, and does this by finding cycles in the control flow graph of the
application. Tupni then maps the loop information to the execution trace by mapping
the program counter to the instructions identified in the program cycle. [75]

Tupni tries to identify the type of record by comparing set of instructions executed
during one record against another; if the instructions are the same or if they contain
sets of instructions (ie child records) that are identical to the parent or another

analyzed record, then those two records are of the same type. In this way Tupni is

39

www.manaraa.com

able to group together same record types and more accurately identify storage type
formats the more files it analyzes. [75]

HOWARD [77], is a solution developed to reverse engineer data structures from
C binaries without any need for symbol tables. According to Slowinska [77], there
is little research in this area and HOWARD supports both the forensics and reverse
engineering communities. HOWARD dynamically analyzes the program; during run-
time deduces the data structure based upon how the program accesses memory. It can
accurately determine frequently accessed arrays, control loops, variables / functions
that make system calls, pointer activity, dynamically allocated memory, and even de-
termine some code semantics based on analyzing well-know function and system calls.
HOWARD has several limitations and is not 100% accurate with determining data
structures. For example, it does not defeat anti-reverse engineering measures (ie code
obfuscation, code that checks for the presence of a VM before running), requires an
array to be accessed at least four times before correct identification, and only works
for programs running in Linux on an x86 processor architecture [77].

HOWARD builds upon other research such as Reverse Engineering Work for Au-
tomated Revelation of Data Structures (REWARDS) that also attempts to reveal
data structures used in a binary executable during program runtime. REWARDS
uses a variety of sophisticated techniques and REWARDS only works for programs
running in Linux on an x86 processor architecture and relies on intel pin architecture
to access the targeted program’s code as it is run on the processor. REWARDS refers
to arguments that are passed to functions of known signatures (such as System Calls,
well-documented APIs, and other publicly accessible APIs) as type sinks. REWARDS
resolves a type of a previously accessed variable once it is resolved from a type sink.
It resolves multiple typed variable instances to the same static abstraction (i.e, all

nodes in a linked list share the same type rather than having distinct types). Once

40

www.manaraa.com

REWARDS has determined the program’s data structures, it generates an organiza-
tion chart that shows a hierarchy of the data structures of how they are laid out in
memory.

Whenever the program makes a know system call with known arguments, it is able
to map the memory locations. It is able to provide a hierarchical view of memory and
an ordered timeframe for when those locations were accessed by applying timestamps
during analysis. REWARDS also tracks common library calls and can determine
the type of an argument with the prior information of the function’s signature of
the library function. REWARDS relies heavily on gathering type information from
variables during the analysis and is most useful for analyzing binary files that have
been compiled in strong-typed languages. [78].

Another research effort that HOWARD built upon, Laika [79], attempts to deter-
mine data structures from a program via dynamic analysis. Laika scans a memory
dump to look for all potential pointers. It estimates the start location of objects as
those addresses that are referenced other places and also over estimates the ending
location of the objects. Laika translates the objects from raw bytes to sequences of
block types. It then clusters objects with similar sequences of block types. If Laika
is successful, it is only able to detect aggregate data structures and not any of the
fields or embedded objects in the structure. [79]

In Dynamic Inference of Abstract Types [80], the paper presents a method that
monitors interaction of variables and classifies them by an abstract type based upon
which one interacts with another. The author implemented two tools for perform-
ing dynamic inference of abstract types: DynCompB for C/C++ binary compiled
executables and DynCompJ for JVM-files derived from high level languages such as
Java. DynCompB uses Valgrind to insert instrumented code into the binary program

at runtime. The tool monitors variable interaction at the entrances and exits of pro-

41

www.manaraa.com

cedures. The tool furthermore relies on debugging information within the executable

to locate variables and read their values from memory.

3.4 Integrating Native and Virtual Machine Dataflow Analysis Techniques

There is precedence in literature that discusses the integration of static and dy-
namic analysis to monitor data flow during program execution. Ruoyu proposes Static
and Dynamic Combined Framework (SDCF), in Static Program Analysis Assisted
Dynamic Taint Tracking for Software Vulnerability discovery[81], to discover CVE-
2007-6454, a string copy vulnerability, in an open source streaming media multicast
tool, PeerCast. Ruoyu contests that the use of both static analysis and dynamic taint
anlaysis is necessary to uncover all software vulnerabilities; dynamically tainting all
traffic through the application would be too high overhead without the assistance of
pre-static code analysis. SDCF uses static analysis to identify the areas in the source
code where vulnerabilities may be present and then taints the data through these
locations to verify the vulnerability presence. SDCF accurately detected all attacks
against BufferAttacker, TxtEdit, IrfanView 4.25, Foxit Reader 3.0 build 1120.

To demonstrate more efficiently detecting cross site scripting and SQL injection
vulnerabilities in web applications based on the Java Servlet Specification, Zhao [82]
first statically analyses the code before fully detecting vulnerabilities using dynamic
tainting. Zhao postulates that because SQL injection and cross-site scripting are
fundamentally taint vulnerabilities, detecting them requires at least a dynamic data
flow tracking approach. By first statically analyzing the code to identify potential
injection points, he focuses taint tracking at these locations to detect positive SQL or
cross-site scripting attacks. Executing the proof of concept on experiment test data
from CWES9_SQL_Injection part of Java (v1.2), resulted in high accuracy and low

non-response rates against the Juliette Test Suite and Bookstore applets. Similar to

42

www.manaraa.com

Ruoyu, Zhao demonstrated the benefits of integrating static and dynamic analysis
for code analysis.

Kirchmayr demonstrates the benefits of static and dynamic code analysis to better
understand legacy programs which may not be supported or where the source code

is no longer available [83].

3.5 Summary

This chapter covered different research efforts to dynamically and statically re-
verse engineering computer programs. Unfortunately their applications toward our
research goal is limited. Most of these efforts focus on natively compiled x86 programs.
There currently is no found research to automate the reversing of android applica-
tions to determine the file formats used to stored persistent data. Since Android is a
complex operating system that allows applications to have access to both native and
virtual resources, providing an automated solution to discover how and where data is
processed and stored in unknown file formats requires a complex solution.

In the next chapter, the culmination of this research is presented in a system called

Automated Data Structure Slayer.

43

www.manharaa.com

IV. System Design and Implementation

Automated Data Structure Slayer (ADSS) implements several of the static and
dynamic reverse engineering techniques discussed earlier in this dissertation to mon-
itor how an application stores data to files of unknown file formats. The intent is
to rapidly discover the format of a file used by an Android Application so that the
examiner can extract forensic data from a file with minimal manual intervention.
ADSS is the first automated reverse engineering tool that programmatically inte-
grates dynamic and static taint analysis, tracks tainted data through the application
and native layers, and determines unknown file formats for Android applications.

This chapter presents the two main phases of ADSS: Static and Dynamic and
the action the examiner takes to during application analysis. Figure 17 shows the
inputs and outputs of each phase. The material in this chapter also appears in
Automated Extraction of Unknown Android Application File Formats, submitted to

IEEE Transactions on Dependable and Secure Computing.

4.1 ADSS Overview

During the Static Phase, the examiner identifies an application on a device and a
file that may have evidentiary interest, referred to as the targeted file. The examiner
downloads the APK from the device and starts ADSS with the APK and the filename
of interest. ADSS decompresses the APK into static files, parsing each programmatic
element into a database of language components. In addition, ADSS parses the
Android SDK sources, storing the inheritance class structure into another database.
Finally, the Static Phase patches the original APK file, ensuring the full filename is
output during the Dynamic Phase. The Static Phase sends the patched APK file and

the reference databases to the Dynamic Phase.

44

www.manaraa.com

APK File Targeted Android SDK
File Name sources
Static Phase
Patched Reference
APK File Databases
Dynamic Phase
Final Hook List | | Hex-to-Object Main Object
Schema

Figure 17. Automated Data Structure Slayer Phases.

During the Dynamic Phase, ADSS installs and launches the patched APK, where

it iteratively hooks programmatically discovered key application methods to iden-

tify the data structures associated with the targeted file. During the iteration, the

examiner will foreground and background the application until the file objects are

fully identified. ADSS then outputs the Final Hook List, a list application methods

hooked, the Main Object Schema, a tree structure of application objects identified

during analysis, and the the Hex-to-Object list, which is the file format of the file

that holds evidentiary interest.

This section discusses the implementation details for each ADSS component of

the static and dynamic phases.

45

www.manaraa.com

4.2 Static Phase

Figure 18 provides an overview of the Static Phase steps. The major process steps

in the system are numbered in the diagram, with the component name in parenthesis.

| APK File | Targeted Android SDK

Filename sources

("s1 (Divide))

v

other components l/
4 manifestfiIT/V/ }| S2 (Parse) |

ﬂ smali files |7
77
N e
| S4 (Unite) |

Reference Databases

v std_lib_db
Patched .
APK File app_lib_db

Figure 18. ADSS Static Phase.

S1 (Divide): ADSS decompresses and disassembles the application using ApkTool
[57], into its various components. ApkTool is an open source program that unzips the
APK into a folder that contains smali code, the original code, the AndroidManifest
file, and other component files. It also decodes the AndroidManifest.xml file into

human-readable Extensible Markup Language (XML) format. This is consistent with

46

www.manaraa.com

the static reverse engineering steps Unpacking and Dissimination.

S2 (Parse): ADSS parses the . smali files and the AndroidManifest file to extract
program language details such as class names, method names, class hierarchy, method
calls, fields, permissions, activity names, and other details using a modified parsing
engine adopted from smalisca [84]. Smali stores objects and types in registers, where
parameters take the form of p# and the local variables v#, where # refers to a register
count. The number of registers available is dependent on the opcode, which can have
access to a register count of 4, 8, or 16 bits [85]. The registers are available for the
scope of the method in which they are defined. Data exists outside the scope of a
method in the fields of a class. Table 2 lists the smali primitive types; because Long
and Double are 64 bits, they require two registers.

The object types in smali take the form of LpackagenameObjectName ;, where
package/name/ is the package that the object is in and Ob jectName is the name of
the object. This smali example would be equivalent to package .name.ObjectName
in the Java language [12]. Since ADSS parses all the smali classes defined in the tar-
geted application, it is able to distinguish between objects from the Android standard
library and an application specific type.

ADSS also parses the Android Software Development Kit (SDK) source files to
determine the inheritance structure for Android’s standard library. ADSS leverages
a database of 330 SDK methods (std_-1ib_db), that have been classified such that
source and destination are known from all the arguments. For example, java.lang.
System.arraycopy (Object src, int srcPos, Object dest, int d-
estPos, int length) takes four arguments, two java.lang.Object and three
int variables. It is unknown without first reading the documentation which array
argument is the source and which is the destination. In this particular case, ADSS

knows beforehand that the first array is copied into the second array. ADSS uses this

47

www.manaraa.com

guidance when tracing and tainting objects that pass through standard library calls
in ADSS D4 (Trace) and D5 (Taint).

ADSS stores the statically parsed tokens from the .smali files and the Android
SDK data flows into pickle database files that will be made available later during
dynamic analysis. SDK data persistsin std_1ib_db and the application smali tokens
in app_lib_db. This also ensures that the smali files do not need to be re-parsed.

S3 (Patch): ADSS patches the original application by adding debug information
(i.e. the source filename and path into the smali file headers) to the static smali code
from each file. ADSS also edits the debug . 1ine numbers to ensure they are neither
duplicated nor negative in each smali file.

S/ (Unite): ADSS builds, using ApkTool, signs, using JarSigner, and installs,
using ADB, the modified smali files onto the device, consistent with the static reverse

engineering step: Reconstruction.

4.3 Dynamic Phase

The Dynamic Phase uses the stored data from the Static Phase to programmat-
ically determine the application methods to hook to display the fileformat for the
examiner. Figure 19 provides an overview of the dynamic phase steps that make up

ADSS. The major process steps in the system are numbered in the diagram, with the

Table 2. Primitive Types[12].

Smali Type | Resolved Type | Size # Registers
A% void 32 bits | 1
7 boolean 32 bits | 1
B short 32 bits | 1
S char 32 bits | 1
C int 32 bits | 1
J long 64 bits | 2
F float 32 bits | 1
D double 64 bits | 2
48

www.manaraa.com

component name in parenthesis.

Reference Databases
std_lib_db
app_lib_db

Patched APK
File

]
'

D5 (Taint) D1 (Integrator) |4

1
1

D4 (Trace

v h 4 h 4
Final Hook List | |Hex-to-Object Main Object
Schema

Figure 19. ADSS Dynamic Phase.

D1 (Integrator): The Integrator is the central component in the Dynamic Phase.

It uses the tokenized smali code stored in the database during ADSS S2 and directly

communicates with the Code Injector (ADSS D2). It injects a dynamic hook into the

running program into either the native or virtual execution layers. The Integrator

communicates with the Code Injector using a text-based encapsulated protocol, such

that each outer layer of meta data is stripped away until the final command is present.

This protocol relies on Frida’s messaging service [86].

49

www.manaraa.com

The examiner starts the application and interacts with it until the file of in-
terest is generated in the private storage directory (i.e. /data/data/applica-
tion_name/files/). The examiner downloads the files via ADB and then runs
the Linux file [87] program on each to identify a file of interest (ie one with an
unknwon fileformat such that £ile returns data).

ADSS launches the application using Android’s built in monkey script [8§]
and pulls back the targeted file via ADB from the application’s filesystem. The
assumption is the application wrote forensic data to the file and that the file stores
the data in an unknown format. ADSS then copies the first 20 bytes of the targeted
file to compare during the remaining ADSS steps.

D2 (Code Injector): The Code Injector executes within the Frida server on the
phone and directly interacts with the running application. It waits to receive JavaScript
code from the Integrator to inject into the target application. Listing IV.1 shows the
part of the Code Injector, onStanza, that can hook a native or virtual method, as

the Integrator directs.

1 function onStanza (stanza)

2

3 if (stanza.to === '/sampler’)

4 {

5 if (stanza.name === '+4+hook_request ')
6 {

7 if (stanza.payload === 'native')

8 run_native_code (stanza.filename) ;
9

10 else if (stanza.payload === 'java')
11 run_java_code (stanza.code) ;

12 }

13 }

14 recv (onStanza) ;

15

Listing IV.1. Code Injector function onStanza.

With a call to run_java_code, shown in Listing IV.2, the Code Injector hooks vir-
tual application methods and the code relies on JavaScript eval function to run until

completions. Hooking virtual functions is further discussed under D4 (Trace) and D5

(Taint).

50

www.manaraa.com

function run_java_code (code)
{
if (Java.available)
{
Java.perform (function ()
{
eval (code)
P
}

O OO0 T WN —

Listing I'V.2. Code Injector function run_java_code.

With a call to run_native, shown in Listing IV.3, the Code Injector hooks
Android’s standard C library (i.e. libc.so open ()) function, specifically filter-
ing on the filename with the unknown format. Once the targeted filename passes
into 1ibc.so open () and the associated file descriptor writes to the 1ibc.so
write () hook, the injected JavaScript code makes successive calls to java.lang.
Thread.currentThread () and java.lang.Thread.getStackTrace (),
shown in Listing IV.4. This returns the current application thread’s stack trace.

Because ADSS S3 patched the application smali code, it shows the full filename,
method name and line number of every call from the standard C library 1ibc.so
write () to the highest application method that the running thread executed — this
is referred to as the TCS Output. It is an unbroken chain of thread function calls that
bridges the native and virtual machine layers of the application. Figure 20 provides
an example of TCS Output, where each TCS method follows the format <class
name:method name:line number>. The most recent called method appears at

the top and the least recent at the bottom.

51

www.manharaa.com

1 function run_native_code (target_filename)
2

3 var open_hook;

4 var write_hook;
5
6

open_hook = Interceptor.attach (Module.findExportByName ('
libc.so’, ’'open'),
7 {
8 onEnter: function (args)
9 {
10 var value = Memory.readUtf8String (args[0]) ;
11 if (typeof value !== ’'undefined’)
12 if (value.indexOf (target_filename) !== -1)
13 this._open_fileName = value;
14 },
15 onLeave: function (retval)
16 {
17 if (retval.toInt32 () > 0)
18 file_descriptor_array[retval.toInt32 ()] = this.
_open_fileName;
19 }
20 }) g
21
22 write_hook = Interceptor.attach (Module.findExportByName (
"libc.so', 'write'’),
23 {
24 onEnter: function (args)
25 {
26 this._write_fName = file_descriptor_arraylargs[0].
toInt32 ()];
27 b
28 onLeave: function (retval)
29 {
30 if (retval.toInt32 () > 0)
31 {
32 if (typeof this._write_fName !== ’‘undefined’)
33 {
34 if (this._write_fName.indexOf (target_filename) !==
_1)
35 {
36 var stack_trace = get_stacktrace () ;
37 if (stack_trace.length > 2)
38 {
39 send (
40 {
41 from: ’'/sampler’,
42 name: ’'+update’,
43 payload:
44 STACKTRACE: stack_trace
45 P) g
46 open_hook .detach () ;
47 write_hook.detach () ;

48 FYREEE))
Listing IV.3. Code Injector function run_native_code.

D3 (Interact): After the Integrator injects a hook (either native or virtual) into the

52

www.manharaa.com

targeted application, the examiner must perform an action to trigger the re-writing
of the targeted file. The interaction is application specific, but our research shows
that merely backgrounding and resuming the targeted application will accomplish the
objective.

D4 (Trace): Upon receipt of the TCS Output over Frida’s messaging service, the
Integrator correlates the TCS method call to the parsed smali tokens that ADSS S2
stored in the database app_1ib_db during the Static Phase. The Integrator traces
the code executed and forms the TCS Tree, a data structure that tracks objects (func-
tion parameters, and register-type pairs) as they enter and leave each TCS method.
Figure 21 conceptually shows how the tree would appear. Additional method calls
occur between each TCS method, denoted by f call N(). Based on our research, it
is within the calls to f_call_ N() that will yield a function that takes as input an ob-
ject and begins the process to serialize the object into data written to the targeted
file. Because the Android Virtual Machine’s implementation mirrors the Java Virtual
Machine, ADSS takes into consideration that objects as annotated in the smali code

may be parent classes of the runtime object being serialized.

1 function get_stacktrace ()

2 |

3 var trace_string = "";

4 if (Java.available)

5 {

6 Java.perform (function ()

7 {

8 var thread = Java.use ('’ java.lang.Thread’) ;

9 var trace = thread.currentThread () .getStackTrace () ;

10 if (trace.length > 0)

11 {

12 for (var i = 0; i < trace.length; i++)

13 trace_string 4= 'TRACE:/' 4+ trace[i].getFileName ()
+ ':’ 4+ trace[i].getMethodName () + ' ():’" +
trace[i].getLineNumber () + ’'\n’;

14 }

15 P

16 }

17 return trace_string;

18 1}

Listing IV.4. Function get_stack_trace().

The Integrator resolves the runtime type of these methods by injecting either a pre-

53

www.manaraa.com

hook or post-hook to retrieve runtime information about the parameters of the hooked

method. Void methods which do not return follow the pre-hook and post-hook

method except without the return keyword. Within the hook, a JavaScript call

to obj.getClass () .toString () reveals the runtime type of object obj. Using

this technique, the Integrator updates the TCS Tree to more accurately depict the

TCS path executed after each successive hook.

In the case where ADSS needs to determine the type of a method call that is

dependent on dynamically generated or local variables declared within the method

scope, ADSS will convert the opcodes executed thus far into JavaScript code inside

the virtual hook sent to the Code Injector.

VMStack. java:getThreadStackTrace () :-2
Thread. java:getStackTrace () :1566
Posix.java:writeBytes () :-2
Posix.java:write () :273

BlockGuardOs. java:write () :319
IoBridge. java:write () :496
FileOutputStream. java:write () :316
app_classl:TCS_Func_212:61
app_classl2:TCS_Func_191:61
app_class34:TCS_Func_14:255
app_class4:TCS_Func_88:129
app_class95:TCS_Func_19:13
app_class62:TCS_Func_21:98
app_class7:TCS_Func_76:13

FutureTask. java:run () :20
ScheduledThreadPoolExecutor. java:run() :22

ThreadPoolExecutor. java:runWorker () : 33
ThreadPoolExecutor. java:run () : 67
Thread. java:run() : 71

Figure 20. Stack Trace Output.

D5 (Taint): Tainting and Tracing work in concert with each other, such that a

method invoke is only traced if it’s parameters contain a tainted object. If the

o4

www.manaraa.com

runtime type of a tainted register is unknown, meaning the static smali code shows a
parent class, then the Integrator, as discussed in D4 Trace, can dynamically resolve
the runtime type of the parent class invoking the method so that it can then be traced
and tainted.

Outside of register tainting within method scope, ADSS taints data as it is written
to a buffer and then dumped to the targeted file. It accomplishes this by tainting
at the byte and object levels. If the first 20 bytes of the targeted file saved in D1
Integrator matches the first 20 bytes of the byte array that is being tracked in the
TCS Tree prior to dumping to the targeted file, then the application objects being
serialized to that buffer are associated with the targeted file. Furthermore, all the
methods that have been identified as passing tainted registers can now filter their their
data flows from the hashcode of the buffer object. This filtering displays application
objects (ie data structures) and their associated bytes only if the bytes are written
to the previously identified buffer. By tainting the memory buffer, this allows ADSS
to monitor data written to the targeted file that may not be directly associated with
the Main Object previously found.

Output: ADSS outputs three products for the examiner. The Final Hook List is
a JavaScript list of the virtual hooks injected into the running application. With this
list, the examiner can restart the application and inject all the hooks simultaneously
without a need to continual interaction between each hook. The Main Object Schema
is a tree structure that displays the types of sub objects dependent on the Main
Object. The Hex-to-Object is a running list of pairs between the object runtime
type and the hex representation from each virtual method hooked in the Final Hook
List. It is from the Hex-to-Object output that the examiner can compare the bytes
linked to data structures with the bytes of the targeted file that represents the File

Format of the targeted file. The examiner can attribute any data not found in the

%)

www.manaraa.com

Hex-to-Object Output from ADSS but present in the targeted file as pre-meta-data.

app_class_1
inherits

TCS_Func_1(arg1, ..., argN)

Code
f_call_1(arg1, ...argN)
f_call_2(arg1, ...argN)
f_call_n(arg1, ...argN)

app_class_2
inherits

TCS_Func_2(arg1, ..., argN)

Code
f_call_1(arg1, ...argN)
f_call_2(arg1, ...argN)
f_call_n(arg1, ...argN)

app_class_N
inherits

TCS_Func_Nqarg1, ..., argN)

Code
f_call_1(arg1, ...argN)
f call_2(arg1, ...argN)
f_call_n(arg1, ...argN)

Figure 21. TCS Tree.

4.4 Summary

In summary, the Automated Data Structure Slayer (ADSS) applies traditional
reverse engineering techniques toward reversing the file formats used by modern An-
droid Applications. It automates this process so that minimal effort is required by
the examiner. After identifying the file of interest, the examiner starts ADSS with
the application and the file. The system processes the application statically and then
uses a series of dynamic injection techniques to hook the methods called along the
Thread Call Stack to associate data structures with the binary data forming the file
of interest. The resulting output is the file format for the file selected.

The next chapter discusses the results from applying ADSS to Discord and Uber.

56

www.manaraa.com

V. Evaluation

The Automated Data Structure Slayer (ADSS) is a tool that implements a new
method to determine file formats of Android applications that store user data in
unknown data formats. It conducts comprehensive static analysis on a targeted ap-
plication, pulling out classes, methods, and other static data structures, and then
dynamically interacts with the application to determine the data structures as they
are converted to bytes and stored in a forensic file of interest. The core source code
for ADSS is written in python and leverages open source technologies — APKTool,
Frida, and built in Android tools to accomplish this objective.

This section demonstrates the results from applying ADSS on the popular Android
application Uber (v4.208.10003) and Discord (v6.6.1). This section discusses identify-
ing the paths executed, reveals the serializers and application objects, shows the serial-
ized objects in their hex representation, displays the for each file, and reveals the final
format respectively. Lastly, using the ADSS output, analyst can extract the eviden-
tiary objects from files realt ime—-demo_KEY_RIDER and STORE_MESSAGES_CA-
CHE_V17 which were created on a different phone, the Galaxy MP running Uber and

Discord applications.

5.1 Experimental Design

The evaluation experiments use the Nexus 6P device running Android (v6.0).
Android was rooted using SuperSU (v2.8.2) [89] and the firmware recovery image
provided by Team Win Recovery Project (TWRP) (v2.8.4) [90] to provide increased
privilege and access to the internal files generated under secure the application folders.
ADSS runs on Linux Mint (v 18.3) [91] and communicates to the device via the

Android Debug Bridge (ADB). In addition Frida server (v7.8.6) [86] for Android

57

www.manaraa.com

ARMG64 and Uber (v3.154.2) is running on the device. This setup to remotely interact
with an application via ADB is consistent with other dynamic analysis approaches,
namely TaintDroid and Droit, with the exception of using an actual device versus an

emulator.

5.2 Uber

Uber [92], a peer-to-peer ride-sharing Android application, is currently listed at
having over 100M downloads as of June 2018. It allows people to work as drivers and
for others to use the application to request rides to their destinations. It is available
in over 600 US cities and the company has a valuation worth over 60 Billion dollars
as of 2017 [93].

In this experiment, we created an Uber user and used the Uber application to ride
from one location to another. Manual inspection showed that Uber generated files
under folder /data/data/com.ubercab/files/. Running the standard Linux
file onfile realtime—-demo_KEY _RIDER revealed that it was of an unknown data
format; this file then became the file of interest for this experiment. realtime-
demo_KEY_RIDER stores profile information about the Uber user, such as email
address, username, phone number, and the full name.

To begin the experiment, ADSS receives the file of interest and the Uber applica-
tion as input. It then parses, patches, and prepares Uber in accordance with ADSS
Static Step 1 and 2. There were approx 70,000 smali files generated from the dis-
assembly and decompression process. Analysis shows the Uber application relies on
native and virtual machine code to execute. It is very complex with multiple levels
of inheritance and the application employs code obfuscation techniques that rename
variables, methods, and classes. Furthermore, Uber uses a third-party library, Kryo,

to store application data.

58

www.manaraa.com

Figure 22 shows the thread call stack that is executed before Uber writes to file

realtime—-demo_KEY_RIDER.

VMStack. java:getThreadStackTrace () : -2
Thread. java:getStackTrace () : 580
Posix.java:writeBytes () :-2
Posix.java:write() :271

BlockGuardOs. java:write () : 313
IoBridge. java:write () :493
FileOutputStream. java:write() :186
smali_classes4/alhx$l.smali:write () :78
smali_classes4/alhy.smali:close () :229
smali_classes8/ddh.smali:a () :36
smali_classes8/dcr.smali:e():277
smali_classes8/dcr.smali:a() :34
smali_classes8/dcrS$l.smali:a():102
smali_classes4/akng.smali:a () :34
smali/akil.smali:b () :1634
smali_classes4/akns.smali:run () :64
smali_classes4/akjf$l.smali:run() :138
smali_classes4/akzy.smali:run() :59
smali_classes4/akzy.smali:call () :51

FutureTask. java:run () : 237
ScheduledThreadPoolExecutor. java:run() :269
ThreadPoolExecutor. java:runWorker () : 1113
ThreadPoolExecutor. java:run() :588

Thread. java:run () : 818

Figure 22. Uber Thread Call Stack.

ADSS parses in the thread call stack and develops a hybrid dynamic and static

data structure to illuminate the path Uber executes consistent with the thread call

stack. The tree is too large to re-create in this paper, but Figure 23 shows the salient

elements (D1 to D9) of the path that Uber takes to write data to the file realt ime-

demo _KEY_RIDER. The steps D1, D2, and D5 are the dynamic points where ADSS

injects code to determine the runtime type of the object making the function call at

those junctions. D1 reveals the main type of the object as com.uber.model.core.

59

www.manaraa.com

generated.rtapi.models.rider.AutoValue_Rider. Because this is the
first custom object which ADSS found that is stored in the targeted file, when junc-
tion D1 passes this object as an argument, then ADSS adjusts its filter to see all traffic
which is written to the output buffer of type com.esotericsoftware.kryo.io.
Output. A curious analyst would inspect this output buffer and identify that it
extends java.io.OutputStream by adding additional functionality to the class.
Now data can be identified as it is passed into D3 and D4 because ADSS is filtering on
the output buffer. At juncture D3, CompatibleFieldsSerializer.write ()
writes the number of fields present in object com.uber.model.core.generated.
rtapi.models.rider.AutoValue Rider asthesecond byte to file realtime-—
demo _KEY RIDER by making a call to D3 in this case there are 35 fields (or 0x23).
Next, Uber writes each field name com.uber .model.core.generated.rtapi.
models.rider.AutoValue Rider as ASCII encoded strings at junction D4 —
this forms the header. Junctures D3 and D4 write the header of file realtime-
demo_KEY _RIDER. A runtime type of null means there is no data associated with
the field and Uber writes (0x00).

Junctures D5 - D9 are used to write the body of file realt ime-demo _KEY_RIDER.
Each field is serialized into a chunk of data as it passes through D5 and is dynamically
resolved to go through D7, D8, or D9. If the field is an object, then it goes through
D7. The primitive types, in this case java.lang.Boolean and java.lang.Integer
pass through junctures D8 and D9 as arguments respectively. After each field of object
com.uber.model.core.generated.rtapi.models.rider.AutovValue_R-
ider is serialized, juncture D6 occurs, which appends the size of bytes to be written
at the end of the written chunk of data. This is used by Uber’s own parser that
reads in the chunks of each file and can determine how long a chunk of data is to be

expected.

60

www.manaraa.com

| dcr.e() |

I_*

| dcw.a(java.lang.Object) |

v

com.esotericsoftware.kryo.writeObject @
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

| java.lang.Object.getClass(java.lang.Object) |

| com.esotericsoftware.kryo.Kryo.getRegistration() |

| com.esotericsoftware.kryo.Registration.getSerializer() |

—

com.esotericsoftware.kryo.serializers.CompatibleFieldSerializer.write @
(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Output, java.lang.Object)

‘ com.esotericsoftware.kryo.io.Output.writeVarint (int, boolean) ‘ @

‘ com.esotericsoftware.kryo.io.Output.writeString (java.lang.String) ‘

[this.getFields() | ¢

com.esotericsoftware.kryo.serializers.FieldSerializer$CachedField.write
(com.esotericsoftware.kryo.io.Output, java.lang.Object) @

com.esotericsoftware.kryo.io.OutputChunked.endChunks() ‘

com.esotericsoftware.kryo.serializers.ObjectField.write @
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

(com.esotericsoftware.kryo.io.Output, java.lang.Object)

—
—> com.esotericsoftware.kryo.serializers.ObjectField $ObjectBooleanField.write
—»

com.esotericsoftware.kryo.serializers.ObjectField $ObjectIntField.write
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

Figure 23. Uber Call Tree.

61

www.manaraa.com

PIN[)IOPIY ON[eAOINY I10PLI

60HS0000X0 | PIRLA299(q() SI9ZI[RLISS OAIN 91eM)JOSILIO)0SO U0 ‘sfopour 1de)r pajeIauasd o100 [oPOW IO WO pmn
GOHS0000X0 | PIRLA299[q() SI9ZI[RLIOS OAIN 91eM)JOSILIN)0SO U0 Surng-sueyeael odA T,108N
Z0HS0000X0 | PIRIA299[q() SI9ZI[RLI0S 0AIN 91eM)JOSILIN)0SO 0D pul sooueregdri)
A0AG0000%0 | PIRIA02[q() SIOZI[RLISS OAIYN 9IRMIJOSILID)0SS WO Suryg-Suereael Sur13goy
V0dS0000%0 | PIRLI299[q () SIOZI[RLIOS 0ATY 01eM)JOSIIIO)OSD U0 Jur SOIIIUOPIAYIR P
T0AS0000%X0 | PIe1309[(q() SIOZI[RLIOS OAIN 91RM)JOSILID}0SO UIOD SuLnyg-3uey-esel o[ox
THN PN[BAOINY "IoPLL
d0650000X0 | PIRIA299[q() SIoZI[RLISS OAIN 91eM)JOSILIO)0SO U0 ‘sfopour 1delr pajeIaussd o100 [oPOW IOGN 0D [INTe1IeFe1
D0K8G0000%X0 | PIPLA99[q() SIOZI[RLIOS OAIN 9IeM}JOSITIO}0SD MO Surng-sueyeael opo)[eliojol
208G0000%0 | PIPLA299(q () SIOZI[RLIOS OAIN 9IeM}JOSITID}0SD TMOD pul s10331dGoIR {JUed91
D0L50000%0 | PIP1109[q() SIOZI[RLIOS OAIN 01eM)JOSOLID}0SO WIOD a[qno(q - Suefeael Suryex
60.50000X0 | PIPI]399[q() SIOZI[RLIOS OA TN 01BM)JOSILIO}0SO TIOD Jurng-3uey-esel uorjowoxd
$0.50000X0 | PIP1]399[q() SI0ZI[RLIOS 0A TN 018M)JOSOLID}0SO TIOD pur sorgoad
T0LS0000X0 | PIRIA199[q() SIOZI[RIISS OAIY 9IRM)JOSILIS)0SS UI0D SuLng-suel-earl odA 1 s1goad
T PN[BAOINY "IoPLL
Z0AT0000X0 | PIRIA299[q() SI0ZI[RLIoS OAIN 91eM)JOSILIO)0SO U0 ‘sfopowr’1de)r’ pejeloussd 9100 [opou Ioqn oo 11nemgord
F0DT0000X0 | PIRI190[q() SIOZI[RLISS OAIN 0IeM)JOSILID)0SS TOD Suryg-Suereael sHSI(JoIqowt
A09¥0000X0 | PIRIA90[q() SIOZI[RLIOS 0OAIN 9IeM)JOSILIO)0SS TOD Surnyg-3uey-esel ZOsIA1unoy)orqour
RIS\ ~ON[eA 0Ny *100[q0
TOVE0000X0 | PIeI109[q () SIOZI[RLIOS OAIN 9IeM}JOSOLID}0SS UI0D ‘sfopour1delr pajerausd o100 [oPOW” IOqN 0D ejow
pme[gorJiuswieJ-onfep oy juowled
000€0000X0 | PIPI199[q() SIOZI[RLIOS OAIY"01BM)JOSILID}0SO TIOD ‘sjopowr’1de)1 pajelausasd 910D [opou 19qn oo dINNPIgoIJIuswie Jpojoo[og)se]
19[[RA\R[B00N)
d0A20000X0 | PIR1A299[q() sIoZI[RLISS OAIN 91eM)JOSILIO)0SS U0 ueajooq-3ue[eael STO[JOIJJUSUIAR JPa1IS[0G)Se]
80420000X0 | PIR1199[q() SIOZI[RLISS OAIN 91RM)JOSILID)OSS TIOD ueajooq-3ue[eael AINNRIeMP[B00) jusmIfe JPajIa[ogIse]
H0HZ0000%X0 | PIRLA99[q () SIOZI[RLIOS OAIN 9IeM}JOSITIOI0SD MO Surng-sueyeael oure NJse|
OwAASUad X " 1opLI
d0H20000X0 | PIe1]300[q() SI0ZI[eLIas 0A TN 91eM)JOSILID]0SO UIOD ‘sjepowr’ 1de)’ pajelauss 9102 [opouW 19N o owd\Psuad X)Se[
ojuasuadxi-en[eA 0Ny ojutesusdxe
90220000%0 | PIPLA299(q () SIOZI[RLIOS OAIN 9IeM)JOSITIO}0SD TMOD ‘sfopowr’1de)1 pojeloussd 9100 [opouW I9qn oo ojuresuadxiyise|
20220000X0 | PIe1390[q() sI0ZI[R119S 0K 1N 91eM)JOSOLI0)0S9 0D ueajoog - 3ue[eael uo9 St
H0TZ0000X0 | PIRLA199(q() SIOZI[RLIOS 0OAIN 9IRM)JOSILII)0OS O ueajoog - 3ue[eael UTpy st
peLIuea[00¢399[q O
g0TZ0000X0 | PIRLI199(q() SIOZI[RLISS OAIN 9IRM)JOSITIN)0S THOD ueajooq-3ue[eael paziowdN gopo)ysey
PRGOS
80TZ0000X0 | PIPI199[q() SIOZI[RLIOS OA TN 01BM)JOSOLID}0SO WIOD 1080ur Sueleael apopyser|
$0TZ0000X0 | PIP1]399[q() SI0ZI[RLIOS 0A TN 01RM)JOSOLID}0SO TIOD ueajoog - Sue[eael suo1yedy1jo Nsugurd (oI ser|
00T20000X0 | PIe1]399[q() SI0ZI[RLIOS 0AIN"91eM)JOSOLID}0SO TIOD ueajoog Sue[eael piomsseJoNsey
V00Z0000%X0 | PIRLI299[(() SIOZI[RLIOS OAI 9IeM)JOSILID)OSD U0 Suriyg-Suefeael ST1)R)GO[IqON POULIUO) SR
90020000X0 | PIe1]309[q() SIOZI[RLIOS 0A TN 9IeM)JOSILID}0S9 TIOD ueajoog Suel esel 9[IQOT\ POULIUO)SBY
H0AT0000X0 | PIRIA299[q() SI0ZI[RLISS 0L LY 91eM)JOSILIO)0SS U0 Surng-sueyeael aure N9sIg
60HT0000X0 | PIRLA299[q() SIoZI[RLISS OAIN 91eM)JOSILIO)0SO U0 Surng-sueyeael [rewa
FOHT0000X0 | PIPLA299(q() SI0ZI[RLIOS OAIN 91eM)JOSILIO)0SO U0 puy sooue[RIPOID
TOHT0000X0 | PIRI199[q() SIOZI[RLIOS OAIN 01BM)JOSILID)OSS TOD Suryg-Suereael S[IqOJA PoWIR[D
19SgO REVA IR ETS odA T, ewrpuny aure N

I9PTY ONTRAOINY " ISPTI sTopouw’ TdelI poleIsusb 9100 Topow I19gn - wod :2dAT, swrjuny urejy

FAAIY AEM OWSP—-SWTI3TeaI/SSTTI/dedasdqn - wod/ B[] PQMH&,H\

"S)MSoY Ioq() € dIqRL,

62

www.manaraa.com

By placing a dynamic hook at D3 and displaying the buffer of data written before
and after the call, ADSS associates the new bytes added to the buffer with a serialized
field. The header of file realt ime—demo_KEY_RIDER in hex is represented in Figure
while the body portion of the file is represented in Figure 25 and Figure 26.

Table 3 summarizes the runtime types of the object and sub-objects stored in file
realtime-demo KEY_RIDER and identifies the starting hex offset of each field as
it appears in Figure 25 and Figure 26.

It is important to note that after ADSS inserts the dynamic hook, the analyst
will have to do an action with the application to trigger the re-writing of the targeted
file again. From 0x0000000 to 0x00001DO0 is the header of the file. The header
contains the concatenation of the sub object field names. The second byte, at offset
0x00000001 stores the number of fields that are written in the file. In this case,
2.3 shows that there are 35 fields and their bytes stored in this field. The header
is a list of strings separated by a non-ascii character (in bold). Each string is the
name of a field. For example, 0x00000602 to 0x00000803 holds the name for field
hasConfirmedMobileStatus.

The body, the remaining part of the file, contains the serialized objects in the order
identified in the header. The bold hex store the length of the next serialized object.
This is a meta data for the application to easily read in the next serialized object; it
indicates the length of the next object appearing in the file, which is in green hex.
For example, starting at offset 0x000100D, 65 6D 61 69 6C is the header name
email. This is the field name listed in the header. The byte representation of the
value stored in header email is located at offset 0x00001EOA as 6A 33 61 6D
65 73 6F 6E 40 67 6D 61 69 6C 2E 63 6F!, which is 20 bytes long. The

meta field that precedes thisis 00 14, which is 20 in decimal, the length of the data.

Lactual email address masked

63

www.manaraa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0OC OD QE OF
0000000 01 23 63 6C 61 69 6D 65 64 4D 6F 62 69 6C E5 63
0000010 72 65 64 69 74 42 61 6C 61 6E 63 65 F3 65 6D 61
0000020 69 EC 66 69 72 73 74 4E 61 6D E5 68 61 73 43 6F
0000030 6E 66 69 72 6D 65 64 4D 6F 62 69 6C E5 68 61 73
0000040 43 6F 6E 66 69 72 6D 65 64 4D 6F 62 69 6C 65 53
0000050 74 61 74 75 F3 68 61 73 4E 6F 50 61 73 73 77 6F
0000060 72 E4 68 61 73 54 6F 4F 70 74 49 6E 53 6D 73 4E
0000070 6F 74 69 66 69 63 61 74 69 6F 6E F3 68 61 73 68
0000080 43 6F 64 E5 68 61 73 68 43 6F 64 65 24 4D 65 6D
0000090 6F 69 7A 65 E4 69 73 41 64 6D 69 EE 69 73 54 65
00000A0 65 EE 6C 61 73 74 45 78 70 65 6E 73 65 49 6E 66
00000BO EF 6C 61 73 74 45 78 70 65 6E 73 65 4D 65 6D EF
00000CO 6C 61 73 74 4E 61 6D E5 6C 61 73 74 53 65 6C 65
00000D0 63 74 65 64 50 61 79 6D 65 6E 74 47 6F 6F 67 6C
00000EO 65 57 61 6C 6C 65 74 55 55 49 C4 6C 61 73 74 53
00000F0 65 6C 65 63 74 65 64 50 61 79 6D 65 6E 74 50 72
0000100 6F 66 69 6C 65 49 73 47 6F 6F 67 6C 65 57 61 6C
0000110 6C 65 F4 6C 61 73 74 53 65 6C 65 63 74 65 64 50
0000120 61 79 6D 65 6E 74 50 72 6F 66 69 6C 65 55 55 49
0000130 C4 6D 65 74 E1 6D 6F 62 69 6C 65 43 6F 75 6E 74
0000140 72 79 49 73 6F B2 6D 6F 62 69 6C 65 44 69 67 69
0000150 74 F3 70 69 63 74 75 72 65 55 72 EC 70 72 6F 66
0000160 69 6C 65 54 79 70 E5 70 72 6F 66 69 6C 65 F3 70
0000170 72 6F 6D 6F 74 69 6F EE 72 61 74 69 6E E7 72 65
0000180 63 65 6E 74 46 61 72 65 53 70 6C 69 74 74 65 72
0000190 F3 72 65 66 65 72 72 61 6C 43 6F 64 E5 72 65 66
00001A0 65 72 72 61 6C 55 72 EC 72 6F 6C E5 74 68 69 72
00001BO 64 50 61 72 74 79 49 64 65 6E 74 69 74 69 65 F3
00001CO 74 oF 53 74 72 69 6E E7 74 72 69 70 42 61 6C 61
00001D0 6E 63 65 F3 75 73 65 72 54 79 70 E5 75 75 69 E4

Figure 24. Header of file realtime—demo KEY RIDER.

64

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0C 0D QE OF
00001E0 01 00 00 03 01 01 00 00 13 01 6A 33 61 6D 65 73
00001F0 6F 6E 40 67 6D 61 69 6C 2E 63 6F ED 00 06 01 4A
0000200 61 63 6F E2 00 02 01 01 00 04 01 59 65 F3 00 02
0000210 01 00 00 02 01 00 00 01 00 00 01 00 00 02 01 0O
0000220 00 01 00 00 €3 01 01 0O CD 01 63 6F 6D 2E 75 62
0000230 65 72 2E 6D 6F 64 65 6C 2E 63 6F 72 65 2E 67 65
0000240 6E 65 72 61 74 65 64 2E 72 74 61 70 69 2E 6D 6F
0000250 64 65 6C 73 2E 65 78 70 65 6E 73 65 69 6E 66 6F
0000260 2E 41 75 74 6F 56 61 6C 75 65 5F 45 78 70 65 6E
0000270 73 65 49 6E 66 6F 01 08 61 6E 6E 6F 74 61 74 69
0000280 6F 6E 45 72 72 6F F2 62 75 73 69 6E 65 73 73 54
0000290 72 69 FO 63 6F 64 E5 65 78 70 65 6E 73 65 54 72
00002A0 69 FO 68 61 73 68 43 6F 64 E5 68 61 73 68 43 6F
00002B0 64 65 24 4D 65 6D 6F 69 7A 65 E4 6D 65 6D EF 74
00002C0O0 6F 53 74 72 69 6E E7 01 00 00 02 01 00 00 05 01
00002D0 6E 75 6C EC 00 02 01 00 00 01 OO OO 01 00 00 05
00002E0 01 6E 75 6C EC 00 01 00 00 00 01 00 OO 08 01 4A
00002F0 61 6D 65 73 6F EE 00 01 00 00 02 01 00 00 9E 01
0000300 01 01 DO 01 63 6F 6D 2E 75 62 65 72 2E 6D 6F 64
0000310 65 6C 2E 63 6F 72 65 2E 67 65 6E 65 72 61 74 65
0000320 64 2E 72 74 61 70 69 2E 6D 6F 64 65 6C 73 2E 70
0000330 61 79 6D 65 6E 74 2E 41 75 74 6F 56 61 6C 75 65
0000340 5F 50 61 79 6D 65 6E 74 50 72 6F 66 69 6C 65 55
0000350 75 69 64 01 03 67 65 F4 68 61 73 68 43 6F 64 ES5
0000360 68 61 73 68 43 6F 64 65 24 4D 65 6D 6F 69 7A 65
0000370 E4 25 01 64 64 37 30 31 37 62 38 2D 36 35 34 62
0000380 2D 34 31 39 39 2D 39 34 65 61 2D 31 39 38 63 38
0000390 36 35 37 64 38 65 E3 00 01 00 00 01 00 00 00 9C
00003A0 02 01 02 C1 01 63 6F 6D 2E 75 62 65 72 2E 6D 6F
00003BO 64 65 6C 2E 63 6F 72 65 2E 67 65 6E 65 72 61 74
00003CO0 65 64 2E 72 74 61 70 69 2E 6D 6F 64 65 6C 73 2E
00003D0 6F 62 6A 65 63 74 2E 41 75 74 6F 56 61 6C 75 65
00003EO0 5F 4D 65 74 61 01 05 68 61 73 68 43 6F 64 E5 68
00003F0 61 73 68 43 6F 64 65 24 4D 65 6D 6F 69 7A 65 E4
0000400 6C 61 73 74 4D 6F 64 69 66 69 65 64 54 69 6D 65
0000410 4D F3 6F 72 69 67 69 6E 54 69 6D 65 4D F3 74 6F
0000420 53 74 72 69 6E E7 01 00 00 01 00 00 77 01 03 C6
0000430 01 63 6F 6D 2E 75 62 65 72 2E 6D 6F 64 65 6C 2E
0000440 63 6F 72 65 2E 67 65 6E 65 72 61 74 65 64 2E 72
0000450 74 61 70 69 2E 6D 6F 64 65 6C 73 2E 74 73 2E 41
0000460 75 74 6F 56 61 6C 75 65 5F 54 69 6D 65 73 74 61
0000470 6D 70 49 6E 4D 73 01 03 67 65 F4 68 61 73 68 43
0000480 6F 64 E5 68 61 73 68 43 6F 64 65 24 4D 65 6D 6F

Figure 25. Hex representation file realt ime—-demo KEY RIDER.

65

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B OC 0D OE OF
0000490 69 7A 65 E4 08 42 76 31 C8 B4 A6 BO 00 00 01 00
00004A0 00 01 00 00 00 13 01 03 01 08 42 76 31 C8 B4 A3
00004B0O 10 00 00 01 00 0O 01 0O 00 OO 01 0O 00 00 03 O1
00004C0 55 D3 00 OB 01 33 30 31 34 30 36 31 30 38 39 00
00004D0 99 01 01 04 63 6F 6D 2E 75 62 65 72 2E 6D 6F 64
00004EQ0 65 6C 2E 63 6F 72 65 2E 67 65 6E 65 72 61 74 65
00004F0 64 2E 72 74 61 70 69 2E 6D 6F 64 65 6C 73 2E 72
0000500 69 64 65 72 2E 41 75 74 6F 56 61 6C 75 65 5F 55
0000510 52 CC 01 03 67 65 F4 68 61 73 68 43 6F 64 E5 68
0000520 61 73 68 43 6F 64 65 24 4D 65 6D 6F 69 7A 65 E4
0000530 33 01 68 74 74 70 73 3A 2F 2F 64 31 77 32 70 6F
0000540 69 72 74 62 33 61 73 39 2E 63 6C 6F 75 64 66 72
0000550 6F 6E 74 2E 6E 65 74 2F 64 65 66 61 75 6C 74 2E
0000560 6A 70 65 E7 00 01 00 00 01 00 00 00 05 01 75 62
0000570 65 F2 00 03 01 01 00 00 01 0O 00 09 01 40 14 00
0000580 00 00 00 00 00 00 03 01 01 OO 00 OD 01 6A 61 63
0000590 6F 62 6A 36 37 34 35 75 E9 00 34 01 04 01 29 01
00005A0 68 74 74 70 73 3A 2F 2F 77 77 77 2E 75 62 65 72
00005B0 2E 63 6F 6D 2F 69 6E 76 69 74 65 2F 6A 61 63 6F
00005C0 62 6A 36 37 34 35 75 E9 00 01 00 00 01 00 0O 0O
00005D0 07 01 63 6C 69 65 6E F4 00 03 01 01 00 00 01 00
00005E0 00 01 00 00 01 00 00 93 01 01 05 C5 01 63 6F 6D
00005F0 2E 75 62 65 72 2E 6D 6F 64 65 6C 2E 63 6F 72 65
0000600 2E 67 65 6E 65 72 61 74 65 64 2E 72 74 61 70 69
0000610 2E 6D 6F 64 65 6C 73 2E 72 69 64 65 72 2E 41 75
0000620 74 6F 56 61 6C 75 65 5F 52 69 64 65 72 55 75 69
0000630 64 01 03 67 65 F4 68 61 73 68 43 6F 64 E5 68 61
0000640 73 68 43 6F 64 65 24 4D 65 6D 6F 69 7A 65 E4 25
0000650 01 31 65 31 37 62 34 38 32 2D 66 36 64 63 2D 34
0000660 38 33 64 2D 61 34 36 66 2D 37 63 31 65 31 66 62
0000670 39 66 38 34 B3 00 01 00 00 01 00 OO 0O

Figure 26. Hex representation file realtime—demo _KEY RIDER.

66

www.manharaa.com

To further aid in deciphering the file format, ADSS produces a schema of the tar-
geted file, located in Figure 27. This is a tree structure which shows the types and sub-
types of the object com.uber.model.core.generated.rtapi.models.rid-
er.AutoValue_Rider which form the backbone of the file realt ime-demo_KEY—

_RIDER.

com.uber.model.core.generated.rtapi.models.rider.AutoValue_Rider

claimedMobile (java.lang.String)
creditBalances (1nd)

email (java.lang.String)

firstName (java.lang.String)
hasConfirmedMobile (java.lang.Boolean)
hasConfirmedMobileStatus (java.lang.String)
hasNoPassword (java.lang.Boolean)
hasToOptInSmsNotifications (java.lang.Boolean)
hashCode$Memoized (java.lang.Boolean)

hashCode (java.lang.Integer)

isAdmin (java.lang.Boolean)

isTeen (java.lang.Boolean)

+-> lastExpenseInfo (com.uber.model.core.generated.rtapi.models.expenseinfo.AutoValue_
ExpenselInfo)

|
V V.V V V V V V V V V Vv

R T T

annotationError (java.lang.String)
businessTrip (java.lang.String)

code (java.lang.String)

expenseTrip (java.lang.String)
hashCode (java.lang.String)
hashCode$Memoized (java.lang.String)
memo (Jjava.lang.String)

toString (java.lang.String)

SERTR IR E I
V V.V V V V V V

|
|
|
|
|
I
|
|
|
|
+-> lastExpenseMemo (com.uber.model.core.generated.rtapi.models.rider.ExpenseMemo)
+-> lastName (java.lang.String)

+-> lastSelectedPaymentGoogleWalletUUID (java.lang.Boolean)

+-> lastSelectedPaymentProfileIsGoogleWallet (java.lang.Boolean)

+-> lastSelectedPaymentProfileUUID (com.uber.model.core.generated.rtapi.models.
payment .AutoValue_PaymentProfileUuid)

I

+-> get (java.lang.String)

+-> hashCode (java.lang.String)

+-> hashCode$Memoized (java.lang.String)

|
\Y%

meta (com.uber.model.core.generated.rtapi.models.object.AutoValue_Meta)

I
+-> hashCode (java.lang.String)

+-> hashCode$Memoized (java.lang.String)
+-> lastModifiedTimeMs (java.lang.String)
+-> originTimeMs (java.lang.String)

+-> toString (java.lang.String)

—-> mobileCountryIso2 (java.lang.String)
—-> mobileDigits (java.lang.String)

——t et —— ——— — - — — — =

Figure 27. Schema from Rider.

67

www.manharaa.com

|
Vv

pictureUrl (com.uber.model.core.generated.rtapi.models.rider.AutoValue_URL)
|

+-> get (java.lang.String)

+-> hashCode (java.lang.String)

+-> hashCode$Memoized (java.lang.String)

profileType (java.lang.String)

profiles (1lnd)

promotion (java.lang.String)

rating (java.lang.Double)
recentFareSplitters (1nd)

referralCode (java.lang.String)
referralUrl (com.uber.model.core.generated.rtapi.models.rider.AutoValue_URL)
I

+-> get (java.lang.String)

+-> hashCode (java.lang.String)

+-> hashCode$Memoized (java.lang.String)

|
V V.V V V V V

role (java.lang.String)
thirdPartyIdentities (1nf)
toString (java.lang.String)
tripBalances (1nd)
userType (java.lang.String)
uuid (com.uber.model.core.generated.rtapi.models.rider.AutoValue_RiderUuid)
\
+-> get (java.lang.String)
+-> hashCode (java.lang.String)
+-> hashCode$Memoized (java.lang.String)

TR T e T i T i S
VvV V. V V V V

Figure 28. Schema from Rider (cont’d).

Figure 29 shows the file format for realtime-demo_KEY_RIDER.

Tested the validity of this file format consists of installing the same version of
Uber on another device, the Samsung Galaxy MP running Android (v4.3). We cre-
ated another user account and rode in an Uber car to a new destination. As expected,
the application generated a similar file and with our knowledge of the file format we
were able to develop a parser to extract the evidentiary data structures from the file

realtime-demo KEY_RIDER. The parser is located in Appendix C.

68

www.manharaa.com

0 7 15 23 31

N object name 1

object name 2, object name 3,

object name 4, object name 5, ... > Header

object name N

len of object 1 serialized object 1
\
len of object 2 serialized object 2
len of object 3 serialized object 3
- - - > Data
len of object 4 serialized object 4
len of object N serialized object N
J

Figure 29. Format of file realtime—demo _KEY RIDER.

5.3 Discord

Discord [94], a communication Android application designed for gamming com-
munities, is currently listed at having over 10M downloads as of June 2018. It allows
people to chat, talk, and video message, and send pictures to one another. It has over
45 Million registered users and the company has a valuation worth over 750 Million
dollars as of 2017 [95].

In this experiment, we created two users and signed each user in on a differ-
ent phone - Pixel XL and Nexus 6P. The Nexus 6P was the rooted device run-
ning Android (v6.0), Frida server (v7.8.6), and Discord (v6.4.7). The different users
sent back and for text messages, pictures, and audio through Voice over IP. Man-
ual inspection of the Nexus 6P revealed that Discord generated files under folder

/data/data/com.discord/files/. Running the standard Linux file on file

69

www.manharaa.com

STORE_MESSAGES_CACHE_V17 showed that it was of an unknown data format; this
file then became the file of interest for this experiment. STORE_MESSAGES_CACHE _V-—
17 stores the entire chat log history for the Discord user, profile details, and other
evidentiary user information.

To begin the experiment, ADSS receives the file of interest and the Discord ap-
plication as input. It then parses, patches, and prepares Discord in accordance with
with ADSS Static Step 1 and 2. There were approx 15,000 smali files generated from
the disassembly and decompression process. Analysis shows the Discord application
relies on native and virtual machine code to execute. Manual inspection identifies that
this application is not as complex as the Uber application but it still does use poly-
morphism and standard code obfuscation techniques that rename variables, methods,
and classes. Furthermore, Discord also uses the third-party library, Kryo, to store
application data, albeit in a different file format serializer.

Figure 30 shows the thread call stack that ADSS generates from hooking the native
standard C 1ibc.so write () and open () functions as Discord writes data to the
targeted file STORE_MESSAGES_CACHE_V17.

Similarly with Uber, ADSS parses in the thread call stack and develops a hybrid
dynamic and static data structure to illuminate the path Discord executes consistent
with the thread call stack. Again, the tree is too large to re-create in this paper, but 31
shows the final path Discord takes to write data to file STORE_MESSAGES_CACHE _V—
17. The steps D1, D2, and D3 are the dynamic points where ADSS injects code to de-
termine the runtime type of the object making the function call at those junctions. D1
reveals the main type of the object as com.discord.models.domain.ModelMe
ssage. D2 shows that it serializes the main type’s fields. D3 identifies the runtime
type of the serialized fields and the associated serializers. Table 5 summarizes the run-

time types of the object and sub-objects stored in file STORE_MESSAGES_CACHE_V17.

70

www.manaraa.com

VMStack. java:getThreadStackTrace () : -2

Thread. java:getStackTrace () : 580

Posix.java:writeBytes () :-2

Posix.java:write() :271

BlockGuardOs. java:write () :313

IoBridge.java:write () :493

FileOutputStream. java:write() :186

com/esotericsoftware/kryo/io/Output.smali:flush() :185

com/esotericsoftware/kryo/io/Output.smali:close() :196

smali/kotlin/d/a.smali:a() :65

smali/com/discord/utilities/persister/Persister.smali:

persist () :14

smali/com/discord/utilities/persister/Persister$Companion$
persistAll$1S$l.smali:invoke () :250

smali/com/discord/utilities/persister/Persister$Companion$
persistAl1$1$1.smali:invoke () :196

smali/com/discord/app/Jj.smali:call():-1
smali/rx/internal/util/b.smali:onNext () :39
smali/rx/observers/b.smali:onNext () :134

smali/rx/internal/a/ai$a.smali:call () :224
smali/rx/internal/c/bSal.smali:call():172

smali/rx/internal/c/Jj.smali:run() :55
Executors. java:call () :423

FutureTask. java:run () : 237
ScheduledThreadPoolExecutor. java:run() :269
ThreadPoolExecutor. java:runWorker () : 1113
ThreadPoolExecutor. java:run () :588

Thread. java:run() :818

Figure 30. Discord Thread Call Stack.

A runtime type of null means there is no data associated with the field.

By placing a dynamic hook at D3 and displaying the buffer of data written be-
fore and after the call, ADSS associates the new bytes added to the buffer with a
serialized field. It is important to note that after ADSS inserts the dynamic hook,
the analyst will have do an action with application to trigger the re-writing of the
targeted file. With Discord, this action is sending or receiving a text message. Im-

mediately before the hook is injected, ADSS deletes the contents of the targeted file

71

www.manaraa.com

to ensure that when the application writes it is not merely an appendation of data.
Figure 32, Figure 33, Figure 34, and Figure 35 show the hex representation for file
STORE_MESSAGES_CACHE_V17. This file is the result of of serializing several Dis-
cord application objects, nested objects, and Java type objects which hold forensic
data used by the Discord application, to include chat logs, pictures, and profile de-
tails about the user. The bold and underlined two bytes (ie 01 02) are the start of
acom.discord.models.domain.ModelMessage object. The green hex follow-
ing correspond to the byte presentation of com.discord.models.domain.Model
Message object. This particular file is storing 11 such objects. It is worth noting
that at offset 0x00000308 associates the two byte ID with a string representing the
fully qualified name of the object being represented. Based on inspection, the future
serialized objects only use the two byte ID to show the start of the same object.

This ID to string association is a pattern which continues throughout the file as
this section will continue to highlight. The two byte fields associated with an object
are listed in Table 4. It is by the hook to com.esotericsoftware.kryo.Kryo.
writeClass () that the two byte field can be seen written in the buffer preceding
the object serialization.

To further aid in deciphering the file format, ADSS produces schema of the tar-

Table 4. Discord Pre-meta class identifier table.
Pre-Meta | Runtime Type
01 00 java.util. HashMap
01 01 java.util. ArrayList

01 02 com.discord.models.domain.ModelMessage

01 03 com.discord.models.domain.ModelUser

01 04 java.util.concurrent.atomic. AtomicReference

01 05 java.util.LinkedHashMap

01 06 com.discord.models.domain.ModelMessageReaction

01 07 com.discord.models.domain. ModelMessageReaction$Emoji

01 08 com.discord.models.domain.ModelMessage Attachment
01 09 com.discord.models.domain. ModelMessage$Call

72

www.manaraa.com

geted file, located in Figure 36. This is a tree structure which shows the types and
subtypes of the object com.discord.models.domain.ModelMessage which
form the backbone of the file STORE_ MESSAGES _CACHE _V17.

There are 11 objects of file STORE_MESSAGES_CACHE_V17, brevity details on
only one presented at offset 00003C09. Figure 37 shows the hex representation of the
third com.discord.models.domain.ModelMessage object. The byte repre-
sentation of each field alternates in color between green and blue. In addition, if
the field is an object with pre-meta class identifier, then the two byte field is high-
lighted and is in the same color as the rest of the bytes that compose that particular
field. For example, offset 0x000040B starts the serialization of object, which is type
com.discord.models.domain.ModelMessage$Call.

With this file format, we then installed and used Discord on another device, the
Samsung Galaxy MP running Android (v4.3). We used another user account on the
Samsun Galaxy MP to communicate over Discord. As expected, the application gen-
erated a similar file and with our knowledge of the file format we were able to a parser
to extract the evidentiary data structures from the file STORE_MESSAGES_CACHE_V17.

The parser is located in Appendix D.

73

www.manharaa.com

com.discord.utilities.persister.Persister.persist()

v

(com.esotericsoftware.kryo.io.Output, java.lang.Object)

com.esotericsoftware.kryo.Kryo.writeClassAndObject @

| java.lang.Object.getClass() |

com.esotericsoftware.kryo.Kryo.writeClass
(com.esotericsoftware.kryo.io.Output, java.lang.Class, java.lang.Object)

v

com.esotericsoftware.kryo.Registration.getSerializer
(com.esotericsoftware.kryo.Serializer)

v

com.esotericsoftware.kryo.Registration.getSerializer() |

|_*

com.esotericsoftware.kryo.serializers.FieldSerializer.write
(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Output, java.lang.Object)

this.transientFields |7

| this.fields I

h 4

com.esotericsoftware.kryo.serializers.FieldSerializer$CachedField.write

(com.esotericsoftware.kryo.io.Output, java.lang.Object)

com.esotericsoftware.kryo.serializers.ObjectField.write
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

com.esotericsoftware.kryo.serializers.ObjectField $ObjectBooleanField.write
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

com.esotericsoftware .kryo.serializers.ObjectField $ObjectIntField.write
(com.esotericsoftware.kryo.io.Output, java.lang.Object)

vV VvV VvV V¥

(com.esotericsoftware.kryo.io.Output, java.lang.Object)

Figure 31. Discord Call Tree.

74

com.esotericsoftware.kryo.serializers.ObjectField $ObjectLong.write

www.manaraa.com

900S0000%0 | PIPLA99[q () SIOZI[RLIOS OAIN 9IeM)}JOSILID}0SD OD Suory-Sue[eael pPIooyqem
G00S0000X0 | PIeIA190(q() SIOZI[RLIOS 0AIN ‘9IRMJOSILIO)0S THOD 10807ur Sueleael od Ay
$00S0000X0 | PIP1]309[q() SIOZI[RLIOS OAIN 918M)JOSOLIO}0SO TIOD ueajoog Sue[eael s1
V0I70000%X0 | PIoL299[(() SIoZI[RLIOS OA T 0IeM)JOSILIO)OSD U0 90UAI9JOYOTUIO]Y *DIUIO) e JUSLINIOU0D [N ear[spuooasIINdure)sawry)
{0F0000X0 | PIe1I199(q() SIOZI[RLISS 0AIN DIBM)JOSILIN)0SS THOD Sutiyg-Sue|eael durejsawry
20d¥0000%X0 | PIRLA92[q () SIOZI[RLISS OALY 91RM}JOSITISI0SS 0D depyyseygpoyur (in-esel SuoI110eal
COAP0000X0 | PIRIA299[q() SIaZI[RLISS OAIN 91eM)JOSOLIS)0SS U0 ueajooq-3ue[eael pauutd
FOAT0000X0 | PIRLA299(q() SIoZI[RLISS OAIN 91eM)JOSOLIO)0SS 0D Surng-sueyeael 2ouou
90670000%X0 | PIPLA299[q () SIOZI[RLIOS OAIY 9IeM}JOSITIDI0SD 0D IsTTARITy TN eARl suorjuow
20670000X0 | PIR1390[q() sI0ZI[RLI0S 0AIN 91eM)JOSILI0)0SO 0D IsTTARITY TN ARl So[oYuorjuew
PIRIAUR9[00g199(q 0§
T0670000%X0 | PIoLI299[q() SIoZI[RLIOS OA I 0IeM)JOSILIO)OSD U0 ueajoog Suel esel QUOAISAG UOTIUS
P[eLI3u0TI99(q O
QO8T0000%X0 | PIPLA199[q () SIOZI[RLIOS OAIN 9IeM}JOSITID}0SD TOD Suory-3ue[eael pr
F0870000%X0 | PIPLA99[q ()’ SIOZI[RLIOS OAIN 9IeM)}JOSITID}0SD TOD IsTTARITY TN ARl spaquio
00870000%0 | PIP1]199[q()’SIOZI[RLIOS OA TN 018M)JOSOLID}0SO TIOD 90UDI9JO OO0 *OTWO) R JUDIINOUOD TIIn eAR(spuodasI[[INdwre)sowI [,paipa
JA0L70000%0 | PIRLI290[q () SIoZI[RLISS 0L 01eM)JOSILIO)0SD O Suriyg-Suefeael durejsewur, [, pajipa
d0L¥0000X0 | PIRLI299[q() SIoZI[RLIoS OA T 91eM)JOSILIO)OSD U0 Suriyg-Sue|eael JUDIU0D
PIRISu0T199(q O3
70.70000%X0 | PIPLA299[q () SIOZI[RLIOS OAIN 9IeM)}JOSITID}0SD 0D Suory-3ue[eael pIeUURYD
d0070000X0 | PIPLI199[q() SIOZI[RLIOS OAL] 9IeMIJOSOLID]0SO 0D | [[BD$OFESSOIN[OPOJN UTRWOP S[OPOW PIOISIP O reo
Z0AE0000X0 | PIRIA292(q() s19ZI[R110S 0AIN 91eM)JOSOLI)0S9 0D I9S()[9POJA UTRWOP S[9POWL’ PIOISIP OO Ioyjne
H0DE0000%X0 | PIOL299[(() SIOZI[RLIOS OA T 0IRM)JOSILIO)OSD U0 IsTTARITy TN ARl sjuawyor)IR
uoryeorddy
d0DE0000%X0 | PIRLA99[q () SIOZI[RLIOS OAI 9IRM}JOSITIDI0SS THOD $O3eSSOT\[[OPOJA " UIRWOP S[POW PIOISIP WO uoryeordde
Ayanoy
d0DE0000%X0 | PIRI299[q () SIOZI[RLIOS OA T 0IRM)JOSILIO)0SD U0 ¢ 98eSSO[\[[POJN " UTRWOP S[9POW " PIOISIP WO Ay1A190€
19SJO I0ZI[RLIOG odA T, swrjunyy aureN

98eSSOTA\[[OPOJN " UTRWOP S[9POW PIOJSIP Wod :2dA T, swrjuny urejy

LTA THOVO™ SADVSSAW TM0LS/Se[/p1oosip wod/ 91 1931e],

"S)MsoY PI0dSI ¢ O[qRL,

5

www.manaraa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD QE QF
0000000 01 00 92 6A 61 76 61 2E 75 74 69 6C 2E 48 61 73
0000010 68 4D 61 70 01 01 09 80 80 90 EO 88 8E F9 9E 0C
0000020 01 01 94 6A 61 76 61 2E 75 74 69 6C 2E 41 72 72
0000030 61 79 4C 69 73 74 01 09 01 02 A7 63 6F 6D 2E 64
0000040 69 73 63 6F 72 64 2E 6D 6F 64 65 6C 73 2E 64 6F
0000050 6D 61 69 6E 2E 4D 6F 64 65 6C 4D 65 73 73 61 67
0000060 65 01 00 00 01 01 01 0O 01 03 A4 63 6F 6D 2E 64
0000070 69 73 63 6F 72 64 2E 6D 6F 64 65 6C 73 2E 64 6F
0000080 6D 61 69 6E 2E 4D 6F 64 65 6C 55 73 65 72 01 00
0000090 00 DO 5A 01 04 AC 6A 61 76 61 2E 75 74 69 6C 2E
00000AO0 63 6F 6E 63 75 72 72 65 6E 74 2E 61 74 6F 6D 69
00000BO 63 2E 41 74 6F 6D 69 63 52 65 66 65 72 65 6E 63
00000CO 65 01 03 01 86 23 35 38 30 30 94 80 80 A8 BE C5
00000D0 F7 9E OC 01 04 01 03 01 8F 40 62 6D 61 6E 34 35
00000EQ0 33 31 23 35 38 30 30 01 89 62 6D 61 6E 34 35 33
00000F0 31 00 80 80 90 EO 88 8E F9 9E 0C 01 A4 54 68 69
0000100 73 20 69 73 20 74 68 65 20 66 69 72 73 74 20 6D
0000110 65 73 73 61 67 65 20 6D 79 20 66 72 69 65 6E 64
0000120 00 01 04 01 09 00 01 01 01 00O BC 80 90 C4 EB 90
0000130 F9 9E OC 00 01 01 01 00 01 01 01 OO 00O 01 00 O1
0000140 05 98 6A 61 76 61 2E 75 74 69 6C 2E 4C 69 6E 6B
0000150 65 64 48 61 73 68 4D 61 70 01 01 01 83 ED A0 BD
0000160 ED B8 8C 01 06 AF 63 6F 6D 2E 64 69 73 63 6F 72
0000170 64 2E 6D 6F 64 65 6C 73 2E 64 6F 6D 61 69 6E 2E
0000180 4D 6F 64 65 6C 4D 65 73 73 61 67 65 52 65 61 63
0000190 74 69 6F 6E 01 04 01 07 B5 63 6F 6D 2E 64 69 73
00001A0 63 o6F 72 64 2E 6D 6F 64 65 6C 73 2E 64 6F 6D 61
00001BO 69 6E 2E 4D 6F 64 65 6C 4D 65 73 73 61 67 65 52
00001CO 65 61 63 74 69 6F 6E 24 45 6D 6F 6A 69 01 00 00
00001D0 12 01 01 Al 32 30 31 38 2D 30 35 2D 30 32 54 30
00001EO0 31 3A 35 39 3A 34 38 2E 38 34 39 30 30 30 2B 30
00001F0 30 3A 30 30 01 04 01 09 CO E8 9D E9 E3 58 00 00
0000200 00 01 02 01 00 OO 01 01 01 O1 01 08 Bl 63 6F 6D
0000210 2E 64 69 73 63 6F 72 64 2E 6D 6F 64 65 6C 73 2E
0000220 64 6F 6D 61 69 6E 2E 4D 6F 64 65 6C 4D 65 73 73
0000230 61 67 65 41 74 74 61 63 68 6D 65 6E 74 01 01 99
0000240 4A 50 45 47 5F 32 30 31 38 30 34 32 37 5F 31 33
0000250 34 36 32 37 2E 6A 70 67 80 3F 00 01 E8 01 68 74
0000260 74 70 73 3A 2F 2F 6D 65 64 69 61 2E 64 69 73 63
0000270 6F 72 64 61 70 70 2E 6E 65 74 2F 61 74 74 61 63
0000280 68 6D 65 6E 74 73 2F 34 34 31 30 35 36 31 33 37
0000290 30 33 35 35 31 33 38 35 36 2F 34 34 31 30 35 36
00002A0 34 39 30 38 35 38 37 34 31 37 38 30 2F 4A 50 45
00002BO 47 S5F 32 30 31 38 30 34 32 37 5F 31 33 34 36 32
00002C0 37 2E 6A 70 67 01 F4 9B CD 01 01 E6 01 68 74 74

Figure 32. Hex representation of file STORE_MESSAGES_CACHE V17.

76

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD QE QF
00002D0 70 73 3A 2F 2F 63 64 6E 2E 64 69 73 63 6F 72 64
00002E0 61 70 70 2E 63 6F 6D 2F 61 74 74 61 63 68 6D 65
00002F0 6E 74 73 2F 34 34 31 30 35 36 31 33 37 30 33 35
0000300 35 31 33 38 35 36 2F 34 34 31 30 35 36 34 39 30
0000310 38 35 38 37 34 31 37 38 30 2F 4A 50 45 47 5F 32
0000320 30 31 38 30 34 32 37 5F 31 33 34 36 32 37 2E 6A
0000330 70 67 A0 2F 01 03 01 00 00 BC 92 01 01 04 01 03
0000340 01 86 23 39 33 37 34 82 80 90 D4 F2 C2 F8 9E 0C
0000350 01 04 01 03 01 8F 40 72 65 64 6D 36 35 33 30 23
0000360 39 33 37 34 01 89 72 65 64 6D 36 35 33 30 00 80
0000370 80 90 EO 88 8E F9 9E 0C 01 81 00 01 04 01 09 00
0000380 01 01 01 00 A8 80 90 C4 D9 A2 F9 9E 0C 00 01 01
0000390 01 00 01 01 01 0O 00 01 00 OO 01 Al 32 30 31 38
00003A0 2D 30 35 2D 30 32 54 30 32 3A 30 31 3A 30 32 2E
00003BO 30 30 31 30 30 30 2B 30 30 3A 30 30 01 04 01 09
00003C0 EO EC A6 E9 E3 58 00 00 00 01 02 01 00 00 01 O1
00003D0 01 00 01 03 01 00 00 DO 5A 01 04 01 03 01 86 23
00003EO0 35 38 30 30 94 80 80 A8 BE C5 F7 9E 0C 01 04 01
00003F0 03 01 8F 40 62 6D 61 6E 34 35 33 31 23 35 38 30
0000400 30 01 89 62 6D 61 6E 34 35 33 31 01 09 AC 63 6F
0000410 6D 2E 64 69 73 63 6F 72 64 2E 6D 6F 64 65 6C 73
0000420 2E 64 6F 6D 61 69 6E 2E 4D 6F 64 65 6C 4D 65 73
0000430 73 61 67 65 24 43 61 6C 6C 01 01 Al 32 30 31 38
0000440 2D 30 35 2D 30 32 54 30 32 3A 30 32 3A 33 39 2E
0000450 32 34 30 30 30 30 2B 30 30 3A 30 30 01 01 01 02
0000460 01 82 80 90 D4 F2 C2 F8 9E 0C 01 94 80 80 A8 BE
0000470 C5 F7 9E 0OC 80 80 90 EO 88 8E F9 9E 0C 01 81 00
0000480 01 04 01 00 01 01 01 00 94 80 A0 A4 BD B4 F9 9E
0000490 0C 00 01 01 01 00 01 01 01 01 01 03 01 00 00 BC
00004A0 92 01 01 04 01 03 01 86 23 39 33 37 34 82 80 90
00004B0O D4 F2 C2 F8 9E 0C 01 04 01 03 01 8F 40 72 65 64
00004C0 6D 36 35 33 30 23 39 33 37 34 01 89 72 65 64 6D
00004D0 36 35 33 30 00 01 00 00 01 A1 32 30 31 38 2D 30
00004E0 35 2D 30 32 54 30 32 3A 30 32 3A 31 34 2E 38 32
00004F0 35 30 30 30 2B 30 30 3A 30 30 01 04 01 09 EO DI
0000500 AF E9 E3 58 00 06 00 01 02 01 00 00 01 01 01 00
0000510 01 03 01 00 00 BC 92 01 01 04 01 03 01 86 23 39
0000520 33 37 34 82 80 90 D4 F2 C2 F8 9E 0OC 01 04 01 03
0000530 01 8F 40 72 65 64 6D 36 35 33 30 23 39 33 37 34
0000540 01 89 72 65 64 6D 36 35 33 30 01 09 01 01 Al 32
0000550 30 31 38 2D 30 35 2D 30 32 54 30 32 3A 30 33 3A
0000560 31 32 2E 37 34 35 30 30 30 2B 30 30 3A 30 30 01
0000570 01 01 02 01 82 80 90 D4 F2 C2 F8 9E 0C 01 94 80
0000580 80 A8 BE C5 F7 9E 0C 80 80 90 EO 88 8E F9 9E 0C
0000590 01 81 00 01 04 01 00 01 01 01 OO 82 80 AO D4 FF

Figure 33. Hex representation of file STORE_MESSAGES_CACHE_V17 (cont’d).

7

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD QE QF
00005A0 BC F9 9E OC 00 01 01 01 00 01 01 01 01 01 03 01
00005B0 00 00 DO 5A 01 04 01 03 01 86 23 35 38 30 30 94
00005C0 80 80 A8 BE C5 F7 9E 0C 01 04 01 03 01 8F 40 62
00005D0 6D 61 6E 34 35 33 31 23 35 38 30 30 01 89 62 6D
00005E0 61 6E 34 35 33 31 00 01 00 00 01 Al 32 30 31 38
00005F0 2D 30 35 2D 30 32 54 30 32 3A 30 32 3A 34 39 2E
0000600 37 31 37 30 30 30 2B 30 30 3A 30 30 01 04 01 09
0000610 DO F4 B3 E9 E3 58 00 06 00 01 02 01 00 00 01 01
0000620 01 00 01 03 01 00 00 BC 92 01 01 04 01 03 01 86
0000630 23 39 33 37 34 82 80 90 D4 F2 C2 F8 9E 0C 01 04
0000640 01 03 01 8F 40 72 65 64 6D 36 35 33 30 23 39 33
0000650 37 34 01 89 72 65 64 6D 36 35 33 30 00 80 80 90
0000660 EO 88 8E F9 9E 0OC 01 81 00 01 04 01 00 01 01 O1
0000670 00 94 80 80 AC D6 C9 F9 9E OC 00 01 01 01 00 01
0000680 01 01 00 00 01 00 00 01 Al 32 30 31 38 2D 30 35
0000690 2D 30 32 54 30 32 3A 30 33 3A 34 31 2E 36 34 33
00006A0 30 30 30 2B 30 30 3A 30 30 01 04 01 09 90 Al BA
00006B0O0 E9 E3 58 00 0OC 00 01 02 01 0O 00 01 01 01 00 O1
00006C0O 03 01 00 00 BC 92 01 01 04 01 03 01 86 23 39 33
00006D0 37 34 82 80 90 D4 F2 C2 F8 9E OC 01 04 01 03 01
00006EQ0 8F 40 72 65 64 6D 36 35 33 30 23 39 33 37 34 01
00006F0 89 72 65 64 6D 36 35 33 30 00 80 80 90 EO 88 8E
0000700 F9 9E OC 01 A8 48 65 72 65 20 69 73 20 61 20 6D
0000710 65 6E 74 69 6F 6E 20 3C 40 34 34 31 30 35 32 36
0000720 39 31 30 37 30 37 31 33 38 36 36 3E 00 01 04 01
0000730 09 00 01 01 01 00 82 80 80 EC 85 D4 F9 9E 0C 00
0000740 01 01 01 00 01 01 01 01 01 03 01 0O 00 DO 5A 01
0000750 04 01 03 01 86 23 35 38 30 30 94 80 80 A8 BE C5
0000760 F7 9E OC 01 04 01 03 01 8F 40 62 6D 61 6E 34 35
0000770 33 31 23 35 38 30 30 01 89 62 6D 61 6E 34 35 33
0000780 31 00 01 00 00 01 A1l 32 30 31 38 2D 30 35 2D 30
0000790 32 54 30 32 3A 30 34 3A 32 34 2E 31 32 33 30 30
00007A0 30 2B 30 30 3A 30 30 01 04 01 09 80 C1 BF E9 E3
00007B0O 58 00 00 00 01 02 01 0O 00 01 01 01 00 01 03 01
00007C0 00 00 DO 5A 01 04 01 03 01 86 23 35 38 30 30 94
00007D0 80 80 A8 BE C5 F7 9E 0C 01 04 01 03 01 8F 40 62
00007EQ0 6D 61 6E 34 35 33 31 23 35 38 30 30 01 89 62 6D
00007F0 61 6E 34 35 33 31 00 80 80 90 EO 88 8E F9 9E 0C
0000800 01 81 00 01 04 01 00 01 01 01 OO 80 80 90 98 E7
0000810 A8 8A A1 OC 00 01 01 01 00O 01 01 01 00 00 O1 0O
0000820 00 01 A1l 32 30 31 38 2D 30 35 2D 30 33 54 31 37
0000830 3A 34 36 3A 35 37 2E 36 33 38 30 30 30 2B 30 30
0000840 3A 30 30 01 04 01 09 DO E9 E9 F1 E4 58 00 0C 00
0000850 01 02 01 00 00O 01 01 01 00 01 03 01 00 OO DO 5A
0000860 01 04 01 03 01 86 23 35 38 30 30 94 80 80 A8 BE

Figure 34. Hex representation of file STORE_MESSAGES_CACHE_V17 (cont’d).

78

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 0OA 0B 0C 0D QE OF
0000870 C5 F7 9E OC 01 04 01 03 01 8F 40 62 6D 61 6E 34
0000880 35 33 31 23 35 38 30 30 01 89 62 6D 61 6E 34 35
0000890 33 31 00 80 80 90 EO 88 8E F9 9E 0C 01 88 47 6F
00008A0 6F 62 65 72 73 00 01 04 01 09 00 01 01 01 00 AA
00008B0O 80 90 EC F4 AF A5 A2 0OC 00 01 01 01 00 01 01 O1
00008C0O 00 00 01 00 00 01 A1l 32 30 31 38 2D 30 35 2D 30
00008D0 34 54 31 36 3A 32 31 3A 35 31 2E 33 38 37 30 30
00008EO0 30 2B 30 30 3A 30 30 01 04 01 09 BO B4 AD BF E5
00008F0 58 00 00 00 01 02 01 00O 00 01 01 01 00 01 03 01
0000900 00 00 DO 5A 01 04 01 00 94 80 80 A8 BE C5 F7 9E
0000910 0C 01 04 01 00 01 89 62 6D 61 6E 34 35 33 31 00
0000920 80 80 90 EO 88 8E F9 9E 0C 01 8C 59 65 73 20 77
0000930 65 20 6B 6E 6F 77 00 01 04 01 09 00 01 01 01 00
0000940 80 80 80 98 85 CE A5 A2 0C 00 01 01 01 00 01 O1
0000950 01 00 01 93 34 34 38 31 36 39 32 30 31 31 39 39
0000960 32 31 38 36 38 38 01 00 00 01 Al 32 30 31 38 2D
0000970 30 35 2D 30 34 54 31 36 3A 32 33 3A 35 34 2E 37
0000980 39 30 30 30 30 2B 30 30 3A 30 30 01 04 01 09 A0
0000990 B6 BC BEF E5 58 00 00 00

Figure 35. Hex representation of file STORE_MESSAGES_CACHE V17 (cont’d).

79

www.manharaa.com

com.discord.models.domain.ModelMessage

activity (com.discord.models.domain.ModelMessage.$Activity)
application (com.discord.models.domain.ModelMessage$Application)
attachments (java.util.Arraylist<com.discord.models.domain.ModelMessageAttachment>)

|
vV VvV V

fileName (java.lang.String)
height (java.lang.Integer)
id (java.lang.String)
proxyUrl (java.lang.String)
size (java.lang.Long)

url (java.lang.String)
width (java.lang.Integer)

SRR T e
vV V. V V V V V

|
v

author (com.discord.models.domain.ModelUser)

avatar (java.lang.String)

bot (java.lang.Boolean)

discriminator (java.lang.Integer)

discriminatorWithPadding (java.util.concurrent.atomic.AtomicReference)
id (java.lang.Long)

mention (java.util.concurrent.atomic.AtomicReference)

userName (java.lang.String)

SRR T
vV V.V V V V V

|
2

call (com.discord.models.domain.ModelMessage$Call)

I

+-> endedTimestamp (Jjava.lang.String)

+-> participants (java.util.ArraylList <java.lang.Long>)

channelId (java.lang.Long)

content (java.lang.String)

editedTimestamp (java.lang.String)

editedTimestampMilliseconds (Jjava.util.concurrent.atomic.AtomicReference)
embeds (java.util.ArrayList)

id (java.lang.Long)

mentionEveryone (java.lang.Boolean)

mentionRoles (java.util.ArrayList<java.lang.Long>)

mentions (java.util.ArraylList<com.discord.models.domain.ModelUser>)
nonce (java.lang.String)

pinned (java.lang.Boolean)

reactions (java.util.LinkedHashMap)

timestamp (java.lang.String)

timestampMilliseconds (java.util.concurrent.atomic.AtomicReference)
tts (java.lang.Boolean)

type (java.lang.Integer)

webhookId (java.lang.Long)

TR T T i i i i i e B e it i i e

|
V V V V V V V V V V V V VYV V VYV

Figure 36. Schema from Model Message.

80

www.manharaa.com

OFFSET 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD QE OQF
00003C0 EO EC A6 E9 E3 58 00 00 00 01 02 01 00 00 01 01
00003D0 01 00 01 03 01 00 00 DO 5A 01 04 01 03 01 86 23
00003E0 35 38 30 30 94 80 80 A8 BE C5 F7 9E 0C 01 04 01
00003F0 03 01 8F 40 62 6D 61 6E 34 35 33 31 23 35 38 30
0000400 30 01 89 62 6D 61 6E 34 35 33 31 01 09 AC 63 6F
0000410 6D 2E 64 69 73 63 6F 72 64 2E 6D 6F 64 65 6C 73
0000420 2E 64 6F 6D 61 69 6E 2E 4D 6F 64 65 6C 4D 65 73
0000430 73 61 67 65 24 43 61 6C 6C 01 01 Al 32 30 31 38
0000440 2D 30 35 2D 30 32 54 30 32 3A 30 32 3A 33 39 2E
0000450 32 34 30 30 30 30 2B 30 30 3A 30 30 01 01 01 02
0000460 01 82 80 90 D4 F2 C2 F8 9E 0C 01 94 80 80 A8 BE
0000470 C5 F7 9E 0C 80 80 90 EO 88 8E F9 9E 0C 01 81 00
0000480 01 04 01 00 01 01 01 00 94 80 A0 A4 BD B4 F9 9E
0000490 0C 00 01 01 01 00 01 01 01 01 01 03 01 00 00 BC
00004A0 92 01 01 04 01 03 01 86 23 39 33 37 34 82 80 90
00004BO D4 F2 C2 F8 9E 0C 01 04 01 03 01 8F 40 72 65 64
00004C0O0 6D 36 35 33 30 23 39 33 37 34 01 89 72 65 64 6D
00004D0 36 35 33 30 00 01 00 00 01 A1 32 30 31 38 2D 30
00004E0 35 2D 30 32 54 30 32 3A 30 32 3A 31 34 2E 38 32
00004F0 35 30 30 30 2B 30 30 3A 30 30 01 04 01 09 EO D1

0000500 AF E9 E3 58 00 06 00 01 02 01 00 00 01 01 01 0O
Figure 37. Discord Hex ModelMessage.

81

www.manharaa.com

serialized object 1, 2, 3, ...

serialized object 4, 5, 6...

Data

serialized object 7, 8, N

Figure 38. Format of file STORE_MESSAGES_CACHE_V17.

5.4 Summary

ADSS successfully identifies the format of realtime—demo _KEY_RIDER and file
STORE_MESSAGES_CACHE_V17 which both store evidentiary data in an unknown file
format used by Android applications Uber and Discord, respectively. realtime-
demo_KEY _RIDER stores profile information about the Uber user, such as email
address, username, full name. STORE_MESSAGES_CACHE_V17 stores the entire chat
log history for the Discord user, profile details, and other evidentiary user information.
Both applications use custom serializers that convert the application objects into data
prior to storage into their respective files.

The next chapter concludes and covers additional research topics that can be

expanded from this dissertation.

82

www.manharaa.com

VI. Conclusion and Future Work

The work presented in this dissertation fulfills the original research objective — to
develop a process that automates the analysis of a mobile application to determine
how and where it stores evidentiary data in files of unknown file formats.

This paper presented a new system, Automated Data Structure Slayer (ADSS),
that automates the reverse engineering of unknown file formats of Android Applica-
tions. ADSS associates application semantics with chunks of data stored in a file of
unknown format; this association reveals the structure of a file, identifying the loca-
tion and type of data stored in a file. ADSS is the first automated reverse engineering
tool that integrates dynamic and static taint analysis, tracks tainted data through the
application and native layers, and determines unknown file formats. ADSS will speed
the development of tools to parse and extract data from these otherwise unknown file
types.

The process automates the routine work and requires little additional effort from
the examiner. The examiner identifies an application on a device and a file that may
have evidentiary interest. The examiner downloads the APK and starts ADSS with
the APK and the filename of interest. ADSS then performs preparsing and editing
of the file to build a database to reference during the dynamic reverse engineering
process. Once the application is patched, ADSS installs and executes the APK, it-
eratively hooks the application methods dynamically to identify the data structures
associated with the file binary portions of the file. During the iteration, the exam-
iner will foreground and background the application until the file objects are fully
identified. ADSS then outputs the file format for the examiner. This process worked
successsfully with Android applications Uber and Discord.

With the Uber application, ADSS correctly determined the fileformat for file

realtime-demo KEY _RIDER. It provided hex offsets at the start of each appli-

83

www.manaraa.com

cation data structure in the file of interest. realtime-demo_KEY_RIDER stores
profile information about the Uber user, such as email address, username, phone num-
ber, and the full name. ADSS revealed a series of objects (the main object of type
com.uber.model.core.generated.rtapi.models.rider.AutovValue_
Rider) separated by pre-meta data that preceded the length of the following seri-
alized object. ADSS verified the format by accessing the same file generated on a
different device.

With the Discord application, ADSS correctly determined the fileformat for file
STORE_MESSAGES_CACHE_V17. It provides hex offset that begins the start of each
application data structure of the file of interest. STORE_MESSAGES_CACHE_V17
stores the entire chat log history for the Discord user, profile details, and other eviden-
tiary user information. ADSS discovered a series of com.discord.models.doma-
in.ModelMessage objects with sub-objects stored in the file; the schema for the
main object data structure was produced. ADSS verified the format by accessing the

same file generated on a different device.

6.1 Expanding the Research

With future work and support, ADSS can be expanded to encompass several
different research areas. Namely multiple architectures, different devices across a wide

range of infrastructures, encrypted files, malware analysis, and exploit development.

Multiple Platforms.

Since Frida supports multiple platforms: Linux, Windows, iOS, MacOS, QNX,
and Android, ADSS can continue to leverage the open source project to interact
with applications running on Apple, Blackberry, and personal computers. Although

Smali is specific to Android, with the development of another parser for extracting

84

www.manaraa.com

the data structures from the decompiled code produced by mobile and desktop device
applications, a similar methodology could be employed to discover closed source file

formats on other platforms.

Wide Range of Infrastructure.

Also, with the explosion of Internet of Things (IOT) devices, discovering how and
where evidentiary data is stored on anything from smart wearables, digital assistants
(e.g. Google Home, Alexa), automotive technologies, network infrastructure, and
other electronic devices would be academically fruitful. Google-based IOT devices
utilize Brillo and Weave, which share common code baseline with Android [96].

Many devices utilize the Linux kernel and with additional coding efforts, ADSS
could be modified to interface with the program and discover formats for generated
files of interest. Particular interest is with routers and switches that store data in

memory, such as log-in credentials and data in transit.

Encrypted Files.

With the concern for privacy and security paramount in society following sev-
eral national [97] [98] and corporate [99] [100] breaches, users are turning to mobile
applications that promise to better protect their data using encryption. Snapchat,
RedPhone, WhatsApp, KakaoTalk, are a few examples of applications that encrypt
the message logs and user data on the device. With dynamic analysis, ADSS could
be adopted to search for the encrypted key that is read or written to the filesystem
during application startup. This step would precede discovering how the cleartext

data is stored (if it uses a proprietary file format).

85

www.manaraa.com

Application Security Analysis.

ADSS could be adopted to conduct an automated security assessment of mobile
applications. There are millions of Android applications available for users to down-
load from the Android Market and from third party application markets ecosystems
[101]. Using ADSS to automate the analysis of these applications would be beneficial
to the security community. Determining where and how these applications store data
on the file system would alleviate the work required to analyze these applications dur-
ing a security assessment. Checking if application store sensitive data outside of their
private security folders, violate the stated permissions in the AndroidManifest.xml
file, and assessing the strength of the encryption (if any) would give an application a

security score and provide a third party security assessment for the application.

86

www.manharaa.com

Appendix A. ADSS Final Hook List for Uber

This appendix provides the final hook list for the Uber Application and the tar-

geted file: realtime—-demo_KEY_RIDER.

1 wvar capture = ""

2

3 function toHexString (arr)

4 {

5 var result = "";

6

7 var alphabet = "0123456789ABCDEF";

8 var mask = 15; // 0000 1111 binary

9

10 for (var i = 0; i < arr.length; i++)

11 {

12 var idxl = arr[i] & mask;

13 var idx2 = (arr[1] >> 4) & mask;

14

15 result += alphabet[idx2] 4+ alphabet [idx1] + " "

7

16 }

17 result = result.substring(0, result.length - 1);

18

19 return result;

20 }

21

22

23 if (Java.available)

24 {

25 Java.perform (function ()

26 {

27 var hook_obj0 = Java.use ('com.esotericsoftware.kryo.

serializers.CompatibleFieldSerializer’) ;

28 var hook_method0 = hook_objO.write.implementation =

function (argl, arg2, arg3)

29 {

30 if (arg3)

31 {

32 var arg3_type = arg3.getClass () .toString () ;

33 if (arg3_type === ’'class com.uber.model.core.

generated.rtapi.models.rider.AutoValue_Rider’
)

34 {

35 capture = arg2.toString ()

36 console.log ("\nSTART
CompatibleFieldSerializer and filtering
on " + capture) ;

37

38 this.write (argl, arg2, arg3)

39

40 console.log ("\tEND CompatibleFieldSerializer

")

41 }

42

43 else

87

www.manharaa.com

44
45
46
47
48
49
50
o1

52

this.write (argl, arg2, arg3)
}

else
this.write (argl, arg2, arg3)
}

var hook_objl = Java.use ('com.esotericsoftware.kryo.io
.Output ') ;

var hook_methodl = hook_objl.writeString.overload ('’
java.lang.String’) .implementation = function (argl)

//java.lang.String

if (capture === this.toString())
{ var mbefore_buffer = toHexString (this.toBytes ())
var ret_val = this.writeString (argl)
var mafter_buffer = toHexString (this.toBytes ())
console.log ("\t\t [FUNC HOOK = writeString (),
VALUE = " 4+ argl 4+ ", BUFFER DELTA = " +

mafter_buffer.slice (mbefore_buffer.length,
mafter_buffer.length) + "]1");
return ret_val;

}

else
return this.writeString (argl)

}

var hook_obj2 = Java.use ('com.esotericsoftware.kryo.
Kryo') ;
var hook_method2 = hook_obj2.writeClass.implementation

= function (argl, arg2)

{

if (capture === argl.toString())
{

var mbefore_buffer= toHexString (argl.toBytes ())
var mvalue = "null"

var mtype = "null"

var mafter_buffer = ""

var ret_val = ""

if (arg2)

{
var field_class = arg2.getClass () ;
mvalue = arg2.toString () ;

if (field_class)

mtype = field_class.toString () ;
}
ret_val = this.writeClass (argl, arg2);
mafter_buffer = toHexString (argl.toBytes ());

88

www.manharaa.com

93 console.log ("\t\t\t [WRITE CLASS, TYPE = " +

mtype + ", VALUE = " + mvalue + ", BUFFER
DATA = " 4+ mafter_buffer.slice (mbefore_buffer
.length, mafter_buffer.length) + "]1");
94 return ret_val
95
96 }
97
98 else
99 return this.writeClass (argl, arg2);
100 }
101
102 var hook_method3 = hook_objl.writeVarInt.
implementation = function (argl, arg2)
103 {
104 if (capture === this.toString())
105 {
106 var mbefore_buffer = toHexString (this.toBytes ())
107 var ret_val = this.writeVarInt (argl, arg2);
108 var mafter_buffer = toHexString (this.toBytes ())
109
110 console.log ("\t\t [FUNC HOOK = writeVarInt (),
BUFFER DELTA = " + mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ I|]||);
111
112 return ret_val;
113 }
114
115 else
116 return this.writeVarInt (argl, arg2)
117 }
118
119 var hook_obj3 = Java.use ('com.esotericsoftware.kryo.
serializers.ObjectField’) ;
120 var hook_method4 = hook_obj3.write.implementation =
function (argl, arg2)
121 {
122 var mtype = "null"
123
124 if (arg2)
125 {
126 if (arg2.getClass ())
127 {
128 mtype = arg2.getClass () .toString ()
129 if (mtype === ’'class com.uber.model.core.
generated.rtapi.models.rider.
AutoValue_Rider ')
130 capture = argl.toString ()
131 }
132 }
133
134 if (capture === argl.toString())
135 {
136 var mvalue = "null"
137 var mname = this.toString ()
138 var field_type = "null"
139 var field_obj = null

89

www.manharaa.com

140

141 if (arg2)

142 field_obj = this.getField (arg2) ;

143

144

145 if (field_obj)

146 {

147 field_type = field_obj.getClass () .toString ()

148 mvalue = field_obj.toString ()

149 }

150

151 var mbefore_buffer = toHexString (argl.toBytes ())

152 this.write (argl, arg2);

153 var mafter_buffer = toHexString(argl.toBytes ()) ;

154

155 console.log ("[SERIALIZER = ObjectField, CLASS =
" 4+ mtype + ", NAME = " 4+ mname + ", TYPE = "
+ field_type + ", VALUE = " 4+ mvalue + ",
BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ "I\n");

156 }

157

158 else

159 this.write (argl, arg2)

160 }

161

162 var hook_obj4 = Java.use ('com.esotericsoftware.kryo.

serializers.ObjectField$ObjectBooleanField’) ;
163 var hook_method5 = hook_obj4.write.implementation =
function (argl, arg2)

164 {

165 var mtype = "null"

166

167 if (arg2)

168 {

169 if (arg2.getClass ())

170 {

171 mtype = arg2.getClass () .toString ()

172 if (mtype === ’'class com.uber.model.core.

generated.rtapi.models.rider.
AutoValue_Rider ')

173 capture = argl.toString ()

174 }

175 }

176

177 if (capture === argl.toString())

178 {

179 var mvalue = "null"

180 var mname = this.toString ()

181 var field_type = "null"

182 var field_obj = null

183

184 if (arg2)

185 field_obj = this.getField (arg2) ;

186

187 if (field_ob3j)

188 {

90

www.manharaa.com

189 field_type = field_obj.getClass ().toString ()

190 mvalue = field_obj.toString ()

191 }

192

193 var mbefore_buffer = toHexString (argl.toBytes ())

194

195 this.write (argl, arg2);

196

197 var mafter_buffer = toHexString(argl.toBytes ()) ;

198

199 console.log ("[SERIALIZER =
ObjectField$ObjectBooleanField, CLASS = " +
mtype + ", NAME = " + mname + ", TYPE = " +
field_type + ", VALUE = " + mvalue + ",
BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ Il]\nll);

200 }

201

202 else

203 this.write (argl, arg2)

204 }

205

206 var hook_obj5 = Java.use ('com.esotericsoftware.kryo.

serializers.ObjectField$ObjectIntField’) ;
207 var hook_method6 = hook_objS.write.implementation =
function (argl, arg2)

208 {

209 var mtype = "null"

210

211 if (arg2)

212 {

213 if (arg2.getClass ())

214 {

215 mtype = arg2.getClass () .toString ()

216 if (mtype === ’'class com.uber.model.core.

generated.rtapi.models.rider.
AutoValue_Rider ')

217 capture = argl.toString ()

218 }

219 }

220

221 if (capture === argl.toString())

222 {

223 var mvalue = "null"

224 var mname = this.toString ()

225 var field_type = "null"

226 var field_obj = null

227

228 if (arg2)

229 field_obj = this.getField (arg2) ;

230

231 if (field_obj)

232 {

233 field_type = field_obj.getClass ().toString ()

234 mvalue = field_obj.toString ()

235 }

236

91

www.manharaa.com

237 var mbefore_buffer = toHexString (argl.toBytes ())

238

239 this.write (argl, arg2);

240

241 var mafter_buffer = toHexString(argl.toBytes ()) ;

242

243 console.log ("[SERIALIZER =
ObjectField$ObjectIntField, CLASS = " + mtype
+ ", NAME = " 4+ mname + ", TYPE = " +
field_type + ", VALUE = " 4+ mvalue + ",
BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ "I\n");

244 }

245

246 else

247 this.write (argl, arg2)

248 }

249

250 P

251 1}

92

www.manharaa.com

Appendix B. ADSS Final Hook List for Discord

This appendix provides the final hook list for the Discord Application and the

targeted file: STORE_MESSAGES_CACHE_V17

1 wvar capture = ""
2 function toHexString (arr)

3

4 var result = "";

5 var alphabet = "0123456789ABCDEF";

6 var mask = 15; // 0000 1111 binary

7 for (var i = 0; i < arr.length; i++)

8 {

9 var idxl = arr[i] & mask;

10 var idx2 = (arr[i] >> 4) & mask;

11 result += alphabet[idx2] + alphabet[idx1l] + " ";

12 }

13 result = result.substring(0, result.length - 1);

14 return result;

15 }

16

17 if (Java.available)

18 {

19 Java.perform (function ()

20 {

21 var hook_objl = Java.use (’'com.esotericsoftware.kryo.
Kryo') ;

22 var hook_methodl = hook_objl.writeClassAndObject.
implementation = function (argl, arg2)

23 {

24 if (arg2)

25 {

26 var arg2_type = arg2.getClass () .toString () ;

27 if (arg2_type === ’'class com.discord.models.

domain.ModelMessage ')

28 {

29 console.log ("\tSTART DATA COLLECTION\nNn") ;

30 capture = argl.toString ()

31 this.writeClassAndObject (argl, arg2);

32 console.log ("\tEND DATA COLLECTION\n") ;

33 }

34 else

35 this.writeClassAndObject (argl, arg2);

36 }

37 else

38 this.writeClassAndObject (argl, arg2);

39 }

40 var hook_method2 = hook_objl.writeClass.implementation
= function (argl, arg2)

41 {

42 if (capture === argl.toString())

43 {

44 var mbefore_buffer = toHexString (argl.toBytes ())

45 var ret_val = this.writeClass (argl, arg2);

46 var mafter_buffer = toHexString (argl.toBytes ());

47 console.log (" [FUNC HOOK = writeClass (), BUFFER

DATA DELTA = " 4+ mafter_buffer.slice (

93

www.manharaa.com

48
49
50
ol
92
93

69

71
72
73
74

75

}

mbefore_buffer.length, mafter_buffer.length)
+ II]H);
return ret_val;
}
else
return this.writeClass (argl, arg2);

var hook_method2 = hook_objl.writeObject.overload (' com

}

.esotericsoftware.kryo.io.Output’, ' java.lang.
Object’, ’'com.esotericsoftware.kryo.Serializer').
implementation = function (argl, arg2, arg3)

if (capture === argl.toString())
{

var mvalue = ""

var mtype = "null?"
if (arg2)
{
mvalue = arg2.toString () ;
if (arg2.getClass ()) ;
mtype = arg2.getClass () .toString () ;
}
var mbefore_buffer = toHexString (argl.toBytes ())
var ret_val = this.writeObject (argl, arg2, arg3)
7
var mafter_buffer = toHexString (argl.toBytes ());
console.log ("[FUNC HOOK = writeObiject (), CLASS =
" + mtype + ", VALUE = " 4+ mvalue + ",
BUFFER DATA = " + mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ I|]||)’.

return ret_val;

}

else
return this.writeObject (argl, arg2, arg3);

var hook_obj2 = Java.use('com.esotericsoftware.kryo.io
.Output ') ;
var hook_method3 = hook_obj2.writeVarInt.
implementation = function (argl, arg2) // (int,
boolean)
{
if (capture === this.toString())
{
var mbefore_buffer = toHexString (this.toBytes ())
var ret_val = this.writeVarInt (argl, arg2);
var mafter_buffer = toHexString (this.toBytes ())
console.log (" [FUNC HOOK = writeVarInt (), BUFFER
DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+)

}

return ret_val;
}
else
return this.writeVarInt (argl, arg2)

var hook_method4 = hook_obj2.writeString.overload ('’

java.lang.String'’) .implementation = function (argl)

94

www.manharaa.com

//Jjava.lang.String

89 {
90 if (capture === this.toString())
91 {
92 var mbefore_buffer = toHexString (this.toBytes ())
93 var ret_val = this.writeString (argl)
94 var mafter_buffer = toHexString (this.toBytes ())
95 console.log (" [FUNC HOOK = writeString (), BUFFER
DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ II]||),.
96 return ret_val;
97 }
98 else
99 return this.writeString (argl)
100 }
101 var hook_obj3 = Java.use ('com.esotericsoftware.kryo.
serializers.ObjectField’) ;
102 var hook_method5 = hook_obj3.write.implementation =
function (argl, arg2)
103 {
104 if (capture === argl.toString())
105 {
106 var mvalue = ""
107 var mname = this.toString ()
108 var mtype = "null"
109 var field_type = "null"
110 var field_obj = null
111 if (arg2)
112 {
113 mtype = arg2.getClass () .toString ()
114 field_obj = this.getField (arg2) ;
115 }
116 if (field_ob3j)
117 {
118 field_type = field_obj.getClass () .toString ()
119 mvalue = field_obj.toString ()
120 }
121 var mbefore_buffer = toHexString (argl.toBytes ())
122 this.write (argl, arg2);
123 var mafter_buffer = toHexString(argl.toBytes ()) ;
124 console.log ("[SERIALIZER = ObjectField, CLASS =
" + mtype + ", NAME = " 4+ mname + ", TYPE = "
+ field_type + ", VALUE = " 4+ mvalue + ",
BUFFER DATA DELTA= " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ "I\n");
125 }
126 else
127 this.write (argl, arg2)
128 }
129 var hook_obj6 = Java.use ('com.esotericsoftware.kryo.
serializers.ObjectField$ObjectBooleanField’) ;
130 var hook_method6 = hook_obj6.write.implementation =
function (argl, arg2)
131 {
132 if (capture === argl.toString())
133 {

95

www.manharaa.com

134 var mvalue = ""

135 var mname = this.toString ()

136 var mtype = "null"

137 var field_type = "null"

138 var field_obj = null;

139 if (arg2)

140 {

141 mtype = arg2.getClass ().toString ()

142 field_obj = this.getField (arg2) ;

143 }

144 if (field_obj)

145 {

146 field_type = field_obj.getClass () .toString ()

147 mvalue = field_obj.toString ()

148 }

149 var mbefore_buffer = toHexString (argl.toBytes ())

150 this.write (argl, arg2);

151 var mafter_buffer = toHexString(argl.toBytes ()) ;

152 console.log (" [SERIALIZER =
ObjectField$ObjectBooleanField, CLASS = " +
mtype + ", NAME = " 4+ mname + ", TYPE = " +
field_type + ", VALUE = " + mvalue + ",
BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ Il]\nll)’.

153 }

154 else

155 this.write (argl, arg2)

156 }

157 var hook_obj7 = Java.use ('com.esotericsoftware.kryo.

serializers.ObjectField$ObjectIntField’) ;
158 var hook_method7 = hook_obj7.write.implementation =
function (argl, arg2)

159 {

160 if (capture === argl.toString())

161 {

162 var mvalue = ""

163 var mname = this.toString ()

164 var mtype = "null"

165 var field_type = "null"

166 var field_obj = null;

167 if (arg2)

168 {

169 mtype = arg2.getClass () .toString ()

170 field_obj = this.getField (arg2) ;

171 }

172 if (field_obj)

173 {

174 field_type = field_obj.getClass ().toString ()

175 mvalue = field_obj.toString ()

176 }

177 var mbefore_buffer = toHexString (argl.toBytes ())

178 this.write (argl, arg2);

179 var mafter_buffer = toHexString(argl.toBytes ()) ;

180 console.log (" [SERIALIZER =
ObjectField$ObjectIntField, CLASS = " + mtype
+ ", NAME = " 4+ mname + ", TYPE = " +
field_type + ", VALUE = " 4+ mvalue + ",

96

www.manharaa.com

BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)

+ "I\n");

181 }

182 else

183 this.write (argl, arg2)

184 }

185 var hook_obj8 = Java.use(’'com.esotericsoftware.kryo.

serializers.ObjectField$ObjectLongField’) ;
186 var hook_method8 = hook_obj8.write.implementation =
function (argl, arg2)

187 {

188 if (capture === argl.toString())

189 {

190 var mname = this.toString ()

191 var mtype = "null"

192 var field_type = "null"

193 var field_obj = null;

194 var mvalue = ""

195 if (arg2)

196 {

197 mtype = arg2.getClass ().toString ()

198 field_obj = this.getField (arg?2) ;

199 }

200 if (field_ob7j)

201 {

202 field_type = field_obj.getClass () .toString ()

203 mvalue = field_obj.toString ()

204 }

205 var mbefore_buffer = toHexString (argl.toBytes ())

206 this.write (argl, arg2);

207 var mafter_buffer = toHexString(argl.toBytes ()) ;

208 console.log ("[SERIALIZER =
ObjectField$ObjectLongField, CLASS = " +
mtype + ", NAME = " 4+ mname + ", TYPE = " +
field_type + ", VALUE = " 4+ mvalue + ",
BUFFER DATA DELTA = " 4+ mafter_buffer.slice (
mbefore_buffer.length, mafter_buffer.length)
+ "I\n");

209 }

210 else

211 this.write (argl, arg2)

212 }

213)

214 1}

97

www.manharaa.com

Appendix C. Parser for Uber

This appendix provides the parser used to extract information from Uber’s file

realtime-demo_KEY _RIDER.

import sys
from functools import partial

U W N~

#filename = "/home/user/Development/PycharmProjects/
DataCarver/GoogleNexusAFiles/realtime -
demo_KEY_RIDER_jacobson_account"

6 filename = "/home/user/Development/PycharmProjects/

DataCarver/GoogleNexusAFiles/realtime —

demo_KEY_RIDER_galaxy_dill_account"

7

8 file_format = [

9 (1, ’'skip’),

10 (1, ’'skip'),

11 (1, ’'java.lang.String’, ’'fieldl’),
12 (1, ’'skip’),

13 (1, '"Java.lang.String’, ’'field2'),
14 (1, ’'skip’),

15 (1, "java.lang.String’, ’'field3'),
16 (1, ’'skip'),

17 (1, ’"java.lang.String'’, ’'field4d’),
18 (1, ’'skip’),

19 (1, ’"Jjava.lang.String'’, ’'field5’),
20 (1, ’'skip’),

21 (1, ’'java.lang.String’, ’'field6’),
22 (1, ’'skip'),

23 (1, ’'java.lang.String'’, ’'field7’),
24 (1, ’'skip’),

25 (1, ’"Jjava.lang.String'’, ’'field8’),
26 (1, ’'skip’),

27 (1, '"java.lang.String’, ’'field9’),
28 (1, ’'skip'),

29 (1, ’"Jjava.lang.String'’, ’'fieldl0'),
30 (1, ’'skip’),

31 (1, '"Java.lang.String’, 'fieldll'),
32 (1, ’'skip’),

33 (1, ’"java.lang.String’, ’fieldl2'),
34 (1, ’'skip'),

35 (1, ’'"JjJava.lang.String’, 'fieldl3’),
36 (1, ’'skip’),

37 (1, ’"java.lang.String'’, 'fieldl4d’),
38 (1, ’'skip’),

39 (1, ’"java.lang.String’, ’'fieldl5'),
40 (1, ’'skip'),

41 (1, ’"java.lang.String'’, ’'fieldl6’),
42 (1, ’'"skip’),

43 (1, '"Jjava.lang.String’, 'fieldl7'),
44 (1, ’'skip’),

45 (1, ’'"java.lang.String’, ’'fieldl8'),
46 (1, ’'skip'),

47 (1, ’'java.lang.String'’, 'fieldl19'),

98

www.manharaa.com

48 (1, ’'skip’),

49 (1, "java.lang.String’, ’field20'),
50 (1, ’'skip’),

51 (1, ’"java.lang.String’, 'field21'),
52 (1, ’'"skip’),

53 (1, ’"Jjava.lang.String'’, 'field22'),
54 (1, 'skip’),

55 (1, ’'"java.lang.String’, ’'field23'),
56 (1, ’'skip’),

57 (1, ’'"java.lang.String’, 'field24'),
58 (1, ’'skip’),

59 (1, ’"Jjava.lang.String'’, 'field25'),
60 (1, ’'skip'),

61 (1, ’'"java.lang.String’, ’'field26'),
62 (1, ’'skip’),

63 (1, ’'"java.lang.String’, 'field27"),
64 (1, ’'"skip’),

65 (1, ’"Jjava.lang.String'’, 'field28'),
66 (1, 'skip’),

67 (1, '"java.lang.String’, ’'field29'),
68 (1, ’'skip’),

69 (1, ’'"java.lang.String’, 'field30'),
70 (1, ’'skip’),

71 (1, ’'"Java.lang.String’, ’'field31'),
72 (1, 'skip’),

73 (1, ’'"java.lang.String’, ’'field32'),
74 (1, ’'skip’),

75 (1, ’'"java.lang.String’, 'field33'),
76 (1, ’'skip’),

77 (1, ’"Jjava.lang.String'’, 'field34'),
78 (1, ’'skip’),

79 (1, ’'"Jjava.lang.String’, 'field35"),
80 (1, ’'skip’),

81 (1, ’"length'’),

82 (1, ’"Java.lang.String’, ’'claimedMobile’),
83 (1, ’'skip’),

84 (1, ’"length’),

85 (1, ’'"1Ind’, 'creditBalances'),

86 (1, ’'skip'),

87 (1, ’"length’),

88 (1, ’"java.lang.String’, ’'email’),

&9 (1, ’'skip’),

90 (1, ’"length’),

91 (1, ’'Jjava.lang.String’, 'firstName'’),
92 (1, ’'skip’),

93 (1, ’"length'’),

94 (1, ’"Jjava.lang.Boolean’, 'hasConfirmedMobile’),
95 (1, ’'skip’),

96 (1, ’"length’),

97 (1, ’"java.lang.String’, "hasConfirmedMobileStatus'’),
98 (1, ’'skip’),

99 (1, ’"length'’),

100 (1, '"Java.lang.Boolean’, ’'hasNoPassword’),
101 (1, ’'skip’),

102 (1, ’"length’),

103 (1, ’'"java.lang.Boolean’, ’'hasToOptInSmsNotifications'),
104 (1, ’'skip’),

105 (1, "length’),

99

www.manharaa.com

106 (1, ’"Jjava.lang.Integer’, ’'hashCode’),

107 (1, ’'skip'),

108 (1, ’'length’),

109 (1, ’'"java.lang.Boolean’, ’'hashCodeS$Memoized’'),

110 (1, ’'"skip’),

111 (1, ’"length’),

112 (1, ’'"java.lang.Boolean’, ’'isAdmin’),

113 (1, ’'skip’),

114 (1, ’"length’),

115 (1, ’'"java.lang.Boolean’, 'isTeen’),

116 (1, ’'"skip’),

117 (1, ’"length’),

118 (1, ’'com.uber.model.core.generated.rtapi.models.
expenseinfo.AutoValueExpenseInfo’, 'lastExpenselInfo’)

119 (1, 'skip’),

120 (1, ’'"skip’),

121 (1, ’"length’),

122 (1, 'com.uber.model.core.generated.rtapi.models.rider.
ExpenseMemo’, 'lastExpenseMemo’),

123 (1, ’'skip’),

124 (1, "length'’),

125 (1, ’"java.lang.String’, 'lastName'),

126 (1, ’'skip’),

127 (1, ’'length’),

128 (1, ’'"java.lang.Boolean’, '
lastSelectedPaymentGoogleWalletUUID'),

129 (1, 'skip’),

130 (1, ’"length’),

131 (1, ’"java.lang.Boolean’, '/
lastSelectedPaymentProfilesGoogleWallet '),

132 (1, ’'skip'),

133 (1, ’"length’),

134 (1, ’'com.uber.model.core.generated.rtapi.models.payment.

AutoValuePaymentProfileUuid'’, '
lastSelectedPaymentProfileUUID'),

135 (1, ’'skip’),

136 (1, ’'skip’),

137 (1, ’"length’),

138 (1, 'com.uber.model.core.generated.rtapi.models.object.
AutoValueMeta’, ’'meta’),

139 (1, ’'skip’),

140 (1, 'skip’),

141 (1, ’"length’),

142 (1, ’"java.lang.String’, ’'mobileCountryIso2’),

143 (1, 'skip'),

144 (1, "length’),

145 (1, ’"Jjava.lang.String’, ’'mobileDigits’),

146 (1, 'skip’),

147 (1, ’'length’),

148 (1, ’'com.uber.model.core.generated.rtapi.models.rider.
AutoValueURL', ’'pictureUrl’),

149 (1, ’skip’),

150 (1, 'skip’),

151 (1, ’"length’),

152 (1, ’'"java.lang.String’, ’'profileType’),

153 (1, ’'skip’),

154 (1, ’'length’),

100

www.manharaa.com

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

def

A
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,

A

Ind’, 'profiles'),

skip'),

length’),

java.lang.String’, ’'promotion’),

skip’),

length’),

java.lang.Double’, ’'rating’),

skip'),

length’),

Ind’, 'recentFareSplitters'’),

skip’),

length’),

java.lang.String’, ’'referralCode’),
skip'),

length’),
com.uber.model.core.generated.rtapi.models.rider.
tovalueURL'’, ’'referralUrl'),

skip’),

length’),

java.lang.String’, ’'role’),

skip'),

length’),

Inf’, ’'thirdPartyIdentities’),

skip’),

length’),

java.lang.String’, ’'toString’),

skip’),

length’),

lnd’, 'tripBalances’),

skip’),
length’),
java.lang.String’,
skip'),
length’),
com.uber.model.core.generated.rtapi.models.rider.
utoValueRiderUuid'’, ’"uuid’)]

~ =~ = = = = = S = = = = = = = =

"userType '),

e w1

get_translated_hex (m_byte, m_interval):

ans

for

for

= []

i in range (0, 600) :
if (i & -128) == 0:
ans.append ((hex (i), 1))
else:
ans.append ((hex ((i & 127) | 128), 1i))
z in ans:
if z[0] == m_byte:
m_interval -= 1
if m_interval == 0:
return z [1]
101

www.manharaa.com

211
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238

239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

def is_ascii(my_char: int):

if (my_char > 62 and my_char < 91) or (my_char > 96 and
my_char < 123) or (my_char == 36) or (my_char > 42
and my_char < 59) or (my_char == 95) or (my_char ==

35) :
return True

return False

needs to start on first ascii character
def get_ascii_str (b_index):

if str(file_datal[b_index]) == '0"':
return "00", b_index
sub_index = Db_index

ascii_str = ""

while is_ascii(file_data[sub_index]) :
ascii_str += chr(file_data[sub_index])
sub_index += 1

return ascii_str, sub_index

byte_counter = 0

chunk_size = 1

file_data = []

with open(filename, ’'rb’) as in_file:

for data in iter (partial (in_file.read, chunk_size), b’")

file_data.append (int.from_bytes (data, byteorder='big
"))

k =0

while k < len(file_format) :

object_type = file_formatl[k][1]
if str (object_type) == 'java.lang.String’:
ascii_str, byte_counter = get_ascii_str (byte_counter
)
print ('\t’ + file_format[k][2] 4+ ' :’ 4+ ascii_str)
k += 1
elif str (object_type) == ’'skip’:

for b in range (0, file_format[k][0]) :
print (hex (file_datalb + byte_counter]))

byte_counter += file_format[k][0]

k += 1

elif str (object_type) == ’'length’:
next_object_type = file_formatl[k + 1][1]
if 'com.’ in next_object_type:

102

www.manharaa.com

263

264 hex_length_bytes = hex(file_data[byte_counter])
265 int_length_bytes = int (file_datal[byte_counter])
266

267 if int_length_bytes == 1:

268

269 mini_hex = ""

270 for p in range (0, int_length_bytes):

271 mini_hex 4= ' ' + hex(file_datalp +

byte_counter + int (file_format[k][0])
1)

272
273 mini_hex = mini_hex.strip ()
274 print (' \nFIELD NAME: ' 4+ file_format[k +
1]1[2] + '"\nFIELD TYPE: ' +
next_object_type + ’'\nFIELD DATA: ' +
mini_hex)
275
276 byte_counter += int_length_bytes + 1
277 k += 2
278
279 else:
280 interval = int (file_datal[byte_counter + 17)
281
282 converted_length_bytes = get_translated_hex (
hex (file_data[byte_counter]), int (
file_datal[byte_counter + 17))
283
284 mini_hex = ""
285 for p in range (0, converted_length_bytes):
286 mini_hex += ' ' 4+ hex (file_datalp +
byte_counter + int (file_format[k][0])
1)
287
288 mini_hex = mini_hex.strip ()
289 print ('\nFIELD NAME: ' + file_format[k +
1]1[2] + "\nFIELD TYPE: ' +
next_object_type 4+ ’'\nFIELD DATA: ' +
mini_hex)
290
291 byte_counter += converted_length_bytes + 1
292 k += 2
293
294 else:
295 length_bytes = int (file_data[byte_counter])
296
297 mini_hex = ""
298 for p in range (0, length_bytes):
299 mini_hex += ' ' + hex(file_datalp +
byte_counter + int (file_format[k][0])1])
300
301 mini_hex = mini_hex.strip ()
302 print ('\nFIELD NAME: ' + file_format([k + 1]1[2] +
"\nFIELD TYPE: ' + next_object_type + '\
nFIELD DATA: ' + mini_hex)
303
304 byte_counter += length_bytes + 1
305 k += 2

103

www.manharaa.com

Appendix D. Parser for Discord

This appendix provides the parser used to extract information from Discord’s file

STORE_MESSAGES_CACHE_V17.

1
2 import sys
3 from functools import partial
4
5 #filename = "/home/user/Development/PycharmProjects/
DataCarver/duplicate/
STORE_MESSAGES_CACHE_V17_galaxy_doctorpropper_account"
6 filename = "/home/user/Development/PycharmProjects/
DataCarver/duplicate/
STORE_MESSAGES_CACHE_V17_nexus6P_doctorpropper_account"
7
8
9 file_format = [
10 #DEPTH,
FAMILY TYPE FIELD NAME
LENGTH
11 (0, ’'"com.discord.models.ModelMessage',
"item', "custom_object’, !
main'),
12 (1, 'com.discord.models.domain.ModelMessage.SActivity’,
"item', "custom_object’, "activity'),
13 (1, ’com.discord.models.domain.ModelMessageSApplication’
, '"item’, "custom_object’, "application’),
14 (1, 'com.discord.models.domain.ModelMessageAttachment ',
"collection’, ’'custom_object’, "attachments '),
15 (2, '"Java.lang.String’,
"item', !
java_primitive’, 'fileName'),
16 (2, ’'"Jjava.lang.Integer’,
"item', !
java_primitive’, ’'height'’, 2),
17 (2, ’"Jjava.lang.Integer’,
"item', !
java_primitive’, ’'id’, 1),
18 (2, ’'"Jjava.lang.String’,
"item', !
java_primitive’, 'proxyUrl’),
19 (2, ’"java.lang.Long',
"item', !
java_primitive’, ’'size’, 5),
20 (2, ’'"Jjava.lang.String’,
"item', !
java_primitive’, ’'url’),
21 (2, ’'"Jjava.lang.Integer’,
"item', !
java_primitive'’, ’'width’', 2),
22 (1, ’"com.discord.models.domain.ModelUser',
"item', "custom_object’, !
author '),
23 (2, ’"Jjava.lang.String’,
"item', !
104

www.manharaa.com

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40

41

42

(2,

(2,

(2,

(2,

(2,

(2,

(1,

(2,

(2,

(1,

(1,

(1,

(1,

(1,

(1,

(1,

(1,

(1,

(1,

java_primitive’, ’avatar'),

"java.lang.Boolean',
"item', !
java_primitive’, ’'bot’, 1),
"java.lang.Integer’,
"item', !
java_primitive’, ’'discriminator’, 3),
"jJava.util.concurrent.atomic.AtomicReference’,
"item', "java_object ', !
discriminatorWithPadding’, 2),
"java.lang.Long’',
"item', !
java_primitive'’, ’'id’, 9),
"jJava.util.concurrent.atomic.AtomicReference’,
"item', "java_object ', "mention’,
1),
"java.lang.String’,
"item', !
java_primitive’, ’'userName'),
"com.discord.models.domain.ModelMessages$Call',
"item', "custom_object’, "call'),
"java.lang.String’,
"item', !
java_primitive’, ’'endedTimestamp’, 3),
"java.lang.Long',
"collection'’, '/
java_primitive’, 'participants’, 9),
"java.lang.Long’',
"item', !
java_primitive’, ’'channelId’, 9),
"java.lang.String’,
"item', !
java_primitive’, 'content’),
"java.lang.String’,
"item', !
java_primitive’, ’'editedTimestamp’),
"jJava.util.concurrent.atomic.AtomicReference’,
"item', " java_object ', !
editedTimestampMilliseconds’', 3),
"java.lang.Object ',
"collection’, '/
java_object ', "embeds '),
"java.lang.Long',
"item', !
java_primitive’, ’id’, 9),
"java.lang.Boolean’,
"item', !
java_primitive’, ’'mentionEveryone’, 1),
"java.lang.Long',
"collection'’, '/
java_primitive’, '‘mentionRoles’, 9),
"com.discord.models.domain.ModelUser ',
"collection’, ’'custom_object’, !

mentions'’),
"java.lang.String’,
"item',
java_primitive’, 'nonce’),

105

www.manharaa.com

43

44

45

46

47

48

byte_counter
format_index

pre_meta_table

(1, ’"java.lang.Boolean',
"item', !
java_primitive’, 'pinned’, 2)
(1, ’"java.util.LinkedHashMap’,
"item', "java_object
", "reactions'),
(1, ’"Jjava.lang.String',
"item', !
java_primitive’, 'timestamp’),
(1, ’"java.util.concurrent.atomic.AtomicReference’,
"item', "java_object’, !
timestampMilliseconds ', 3),
(1, ’"java.lang.Boolean',
"item', !
java_primitive’, 'tts’, 1),
(1, ’"java.lang.Integer’,
"item', !
java_primitive'’, 'type’, 1),
(1, ’"java.lang.Long’',
"item', !
java_primitive’, 'webhookId’, 1)]

[
o o

{}

chunk_size = 1
obj_count =
file_data = []
def get_integer (b_index, length):
for x in range (0, length):
print ('int: ' + hex(file_datalb_index]) + ' at count
" + str (b_index))
b_index += 1
return Db_index
def get_boolean (b_index, length):
for x in range (0, length):
print ('bool: ' + hex(file_datal[b_index]))
b_index += 1
return b_index
def get_long(b_index, length):
for x in range (0, length):
print ('long: ' + hex(file_datalb_index]) + ' at
count: ' 4+ str (b_index))
b_index += 1
return b_index

106

www.manharaa.com

115
116

117

118
119

120
121
122
123

124
125

126
127
128

129
130
131

def get_generic (b_index, length):
for x in range (0, length):
print (' generic: ' + hex(file_datal[b_index]))
b_index += 1

return b_index

needs to start on first ascii character
def get_ascii_name (b_index) :
if file_data[b_index] == 1:
b_index += 1

ascii_str = ""
sub_index = b_index

while is_ascii(file_data[sub_index]):

ascii_str += chr (file_data[sub_index])

sub_index += 1
check for stopper at the end ... anything over 160
if file_data[sub_index] >= 160:

sub_index += 1

return ascii_str, sub_index

def extract_java_primitive (m_byte_index, m_format_index) :

if file_format[m_format_index][1l] == ' Jjava.lang.Integer’
print (' \nFIELD: ' 4+ file_format[m_format_index][4] +
"\nTYPE: ' + file_format[m_format_index][1])
if file_format [m_format_index][4] == ’'discriminator’
variable 2 or three bytes
m_byte_index = get_integer (m_byte_index, 2) #

get two bytes

if file_data[m_byte_index] + file_datal

m_byte_index + 1] == 2: # if there is a
banner banner
m_byte_index = get_generic(m_byte_index, 1)
else:
m_byte_index = get_integer (m_byte_index,
file_format[m_format_index][5])
elif file_format[m_format_index][1l] == ’Jjava.lang.String
if str(file_data[m_byte_index]) == '0':
print (' \nFIELD: ' + file_format[m_format_index

104] + '"\nTYPE: ' + file_format |
m_format_index][1] + '"\nDATA:0x00")

m_byte_index += 1

107

www.manharaa.com

132 # check for stopper at the end ... anything over

160

133 if file_data[m_byte_index] >= 160:

134 m_byte_index += 1

135

136 else:

137 ascii_name, m_byte_index = get_ascii_name (
m_byte_index)

138 print (' \nFIELD: ' + file_format[m_format_index
104] + "\nTYPE: ' + file_format |
m_format_index][1] + '\nDATA: ' + ascii_name)

139

140 elif file_format|[m_format_index][1l] == 'java.lang.
Boolean':

141 print (' \nFIELD: ' 4+ file_format[m_format_index][4] +

"\nTYPE: ' + file_format[m_format_index][1])
142 m_byte_index = get_boolean (m_byte_index, file_format
[m_format_index][5])
143
144 elif file_format [m_format_index][1] == ’'java.lang.
generic’:
145 print (' \nFIELD: ' 4+ file_format[m_format_index][4] +
"\nTYPE: ' 4+ file_format[m_format_index][1])

146

147 m_byte_index = get_generic (m_byte_index, file_format
[m_format_index][5])

148

149 elif file_format[m_format_index][1l] == 'java.lang.Long’:

150 print ('\nFIELD: ' + file_format[m_format_index][4] +

"\nTYPE: ' + file_format[m_format_index][1])

151 m_byte_index = get_long (m_byte_index, file_format [

m_format_index][5])

152

153 elif file_format[m_format_index][1l] == 'skip’':

154 m_byte_index = get_generic (m_byte_index, file_format

[m_format_index][5])

155

156 return m_byte_index, m_format_index + 1

157

158

159 def is_ascii(my_char: int):

160 if (my_char > 63 and my_char < 91) or (my_char > 96 and
my_char < 123) or (my_char == 36) or (my_char > 42
and my_char < 59) or (my_char == 95) or (my_char ==
35) or (my_char == 40) or (my_char == 32):

161 return True

162

163 return False

164

165

166 def get_object_key (b_index) :

167

168 key = str(file_datal[b_index])

169

170 b_index += 1

171

172 # make sure next isn’t banner 01

173 if file_data[b_index] != 1:

108

www.manharaa.com

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190
191

192
193

194
195

196
197

198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

ascii_str, b_index = get_

pre_meta_tablelkey] = asc
return ascii_str, b_index

else:
return "", Db_index, key

ascii_name (b_index)
ii_str
, key

def extract_collection(m_byte_index, m_format_index) :

m_byte_index += 3

check if object has anything

if str(file_data[m_byte_index]) == ’1":
m_byte_index += 1
if file_format[m_format_index][3] == ' Jjava_primitive

I e

print ('\tcollection o

f primitives')

m_byte_index, m_format_index =
extract_java_primitive (m_byte_index,

m_format_index)

elif file_format[m_format
custom_object ' :
print ('\tcollection o

_index][3] == "'

f custom objects’)

m_byte_index, m_format_index =
extract_custom_object (m_byte_index,

m_format_index)

elif file_format[m_format_index][3] == 'Jjava_object’

print (' \tcollection o

f java objects'’)

m_byte_index, m_format_index =
extract_java_object (m_byte_index,

m_format_index)
return m_byte_index, m_fo

else:
print ('\tcollection has 0
needs to skip any sub £
start_depth = file_format

rmat_index + 1

x00 elements’)
ormats
[m_format_index] [0]

next_depth = file_format[m_format_index + 1][0]

if start_depth < next_depth:
while start_depth < next_depth:

m_format_index +=

1

next_depth = file_format[m_format_index][0]

return m_byte_index +
else:

return m_byte_index +

def extract_java_object (b_index,

109

1, m_format_index

1, m_format_index + 1

m_file_ _index) :

www.manharaa.com

222

223
224
225
226
227
228
229
230
231
232

233

234
235
236
237

238
239
240

241

242
243
244

245
246
247
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

if an object field with data, expect ’'01 <2 byte key>
01"’
if str(file_data[b_index]) == '1"':
b_index += 1 # bannerl

ascii_str, b_index, key = get_object_key (b_index)

if str(file_data[b_index]) == '1":
print (' \tthere is data in this java object’)
b_index += 1

if file_ _format[m_file_index][4] == '
timestampMilliseconds’:
b_index = get_generic (b_index, 7) # 7 two
byte padding

else:
if str(file_data[b_index]) != "0':
b_index = get_generic (b_index, 1) # 1
two byte padding
if file_data[b_index] != O0:
ascii_str, b_index = get_ascii_name (
b_index)
print (' \nFIELD: ' + file_format |
m_file_index][4] + '"\nTYPE: java.
lang.String\nDATA: ' + ascii_str)
else:
print ('\nFIELD: ' 4+ file_format [
m_file_index][4] + '\nTYPE: java.
lang.String\nDATA: 0x00")
b_index += 1
else:

print ('\nFIELD: ' 4+ file_format /|
m_file_index][4] + '\nTYPE: java.lang
.String\nDATA: 0x00")

b_index += 1

return b_index, m_file_index + 1

elif is_ascii(file_datal[b_index]) is False:
print (' \tno data in java object’)

else:
print ('\tno data in java object’)

return b_index + 1, m_file_index + 1

start at 01 0X
def extract_custom_object (m_byte_index, m_format_index) :

start_depth = file_format[m_format_index] [0]

get banner

if str(file_data[m_byte_index]) == ’'1":
print (' \nAAAAFIELD: ' + file_format[m_format_index
104] + '"\nTYPE: ' + file_format[m_format_index

110

www.manharaa.com

1

268 m_byte_index += 1

269

270 ascii_name, m_byte_index, key = get_object_key (

m_byte_index)

271

272 if str(file_data[m_byte_index]) == ’1":

273 print (' \tthere is data in object’)

274

275 next_depth = file_format[m_format_index + 1][0]

276 if start_depth < next_depth:

277 return extract_custom_object_helper (
m_byte_index + 1, m_format_index + 1,
start_depth)

278

279 else:

280 print (' \nBBBBBBFIELD: ' + file_format[m_format_index

104] + '"\nTYPE: ' + file_format[m_format_index
101] + "\nDATA:0x00’" + ' HEX: ' + hex(file_datal
m_byte_index]) + ' at byte count: ' + str(
m_byte_index))

281

282 m_format_index += 1

283 next_depth = file_format[m_format_index] [0]

284 while start_depth < next_depth:

285 print (' skipping sub format ' + file_format /|

m_format_index][11])

286 m_format_index += 1

287 next_depth = file_format[m_format_index] [0]

288

289 print ('oh snap2’)

290 return extract_custom_object_helper (m_byte_index +

1, m_format_index, start_depth)

291

292

293 def extract_custom_object_helper (m_byte_index,
m_format_index, start_depth):

294

295 if m_format_index < len(file_format) :

296 current_depth = file_format [m_format_index] [0]

297

298 if start_depth < current_depth:

299

300 # if an object field with no data, expect ’'01 <2

byte key> 00’

301

302 if file_format[m_format_index][2] == ’'item’:

303

304 if file format[m_format_index][3] == '

java_primitive’ :

305 m_byte_index, m_format_index =
extract_java_primitive (m_byte_index,
m_format_index)

306

307 elif file_ format[m_format_index][3] == '

custom_object ' :

308 m_byte_index, m_format_index =

extract_custom_object (m_byte_index,

111

www.manharaa.com

309
310

311

312
313

314

315

316
317

318
319
320
321
322
323
324
325
326
327

328

329
330
331
332
333
334
335
336
337

338
339
340

341
342

343

344
345

346
347

m_format_index)

elif file format [m_format_index] [3] == "'
java_object ' :
m_byte_index, m_format_index =
extract_java_object (m_byte_index,
m_format_index)

elif file_format [m_format_index][2] == "'
collection':

print ('\nFIELD: ' 4+ file_format [
m_format_index][4] + ’'\nTYPE: collection
of ' 4+ file_format[m_format_index][1])

m_byte_index, m_format_index =
extract_collection (m_byte_index,
m_format_index)

return extract_custom_object_helper (m_byte_index
, m_format_index, start_depth)

else:
return m_byte_index, m_format_index

else:
return m_byte_index, m_format_index

with open(filename, ’'rb’) as in_file:
for data in iter (partial (in_file.read, chunk_size), b’"')

file_data.append (int.from_bytes (data, byteorder='big
"))

message_count = 0
while byte_counter < len(file_data) :
look for pattern 01 0X ascii_string
first byte should be 01
if str(file_datal[byte_counter]) == ’'1":

looking for key 01 - 09
if file_datalbyte_counter + 1] >= 0 and file_data]l
byte_counter + 1] < 9:

save_byte_index = byte_counter
ascii_name, byte_counter, key = get_object_key (
byte_counter + 1)

if '"com.discord.models.domain.ModelMessag’' in
ascii_name:
print ("\n-———----—-———————— FOUND MESSAGE " +
str (message_count))
message_count += 1
byte_counter, m_format_index =
extract_custom_object (save_byte_index, 0)

elif ’'com.discord.models.domain.ModelMessag’' in
pre_meta_tablel[key]:

112

www.manharaa.com

348 print ("\n--—-—————-—————————- FOUND MESSAGE " +
str (message_count))

349 message_count += 1

350 byte_counter, m_format_index =
extract_custom_object (save_byte_index, 0)

351

352 else:

353 byte_counter += 1

354

355 else:

356 byte_counter += 1

357 else:

358 byte_counter += 1

359

360 for k in sorted (pre_meta_table.keys ()):

361 print (k + ' = ' 4+ pre_meta_tablel[k])

113

www.manharaa.com

Bibliography

. W. R. Stevens and S. A. Rago, Advanced Programming in the Uniz Environment
(3 edition). New York: Addison Wesley, 2014.

. J. Levin, “Dalvik and ART,” AndDevCon, 2015. [Online]. Available:
http://newandroidbook.com/files/ ArtOfDalvik.pdf

. A. Frumusanu, “A Closer Look at Android RunTime (ART) in Android L,”
Anandtech, 2014. [Online]. Available: http://www.anandtech.com/show/8231/
a-closer-look-at-android-runtime-art-in-android-1/

. T. L. Strazzere, J. Sawyer, and C. Fenton, “Offensive and Defensive
Android Reverse Engineering,” DefCon23, 2015. [Online]. Available: https:
//github.com/rednaga/training/tree/master/ DEFCON23

. U. S. Laboratories, System V Application Binary Interface, Xinuos Inc.,
June 2013. [Online]. Available: http://www.sco.com/developers/gabi/latest/
contents.html

. M. Stevanovic, Advanced C and C++ Compiling. New York: Apress, 2014.

. (2018) Compiler, Assembler, Linker and Loader: A Brief Story. [Online].
Available: http://www.tenouk.com/ModuleW.html

. R. Krishnakumar, “Experiments with the Linux Kernel: Process Segments,”
Linuz Gazette, 2005. [Online]. Available: http://linuxgazette.net/112/
krishnakumar.html

. L. Torvalds and M. Others, The Linuz Kernel. Wokingham, Berkshire United
Kingdom: The Linux Documentation Project, 1999.

. C. 02557590, ARM ®) Cortex ® -A Series Programmer’s Guide for ARMuvS-A
ARM Cortezx-A Series Programmer’s Guide for ARMuv8-A, ARM Inc., May 2015.
[Online]. Available: https://static.docs.arm.com/den0024/a/DEN0024.pdf

. K. Pankaj, “Java Heap Space vs Stack - Memory Allocation in Java,”
JournalDev, 2014. [Online]. Available: https://www.journaldev.com/4098/
java-heap-space-vs-stack-memory

. B. Gruver. (2015) TypesMethodsAndFields. [Online]. Available: https:
//github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

. P. Shankdhar, “22 Popular Computer Forensics Tools,” Infosec In-
stitute, 2018. [Online]. Available: http://resources.infosecinstitute.com/
computer-forensics-tools

114

www.manaraa.com

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Hill, “Android vs. iOS: In-Depth Comparison of the Best Smartphone
Platforms,” DigitalTrends, 2018. [Online|. Available: https://www.digitaltrends.
com/mobile/android-vs-ios/

J. Hamill, “How terrorists use encrypted messaging apps to plot, recruit and at-
tack,” New York Post, 2017. [Online]. Available: https://nypost.com/2017/03/
28 /how-terrorists-use-encrypted-messaging-apps-to-plot-recruit-and-attack /

A. M. de Paula, “Security Aspects and Future Trends of Social Networks,” Pro-
ceedings of the Fourth International Conference of Forensic Computer Science,
pp- 6677, January 2009.

K. Rathi, U. Karabiyik, T. Aderibighe, and H. Chi, “Forensic analysis of en-
crypted instant messaging applications on Android,” 6th International Sympo-
stum on Digital Forensic and Security, pp. 1-6, 2018.

N. Freischlad, “Top 5 secure messaging apps for all your private chats,”
Tech In Asia, 2016. [Online]. Available: https://www.techinasia.com/
10-best-secure-messaging-apps

M. Martinez, “Colorado sexting scandal: High school faces felony
investigation,” CNN, 2015. [Online]. Available: https://www.cnn.com/2015/
11/07 /us/colorado-sexting-scandal-canon-city

X. Zhang, 1. Baggili, and F. Breitinger, “Breaking into the wvault:
Privacy, security and forensic analysis of Android vault applications,”
Computers and Security, vol. 70, September 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404817301529

M. Pincus, J. Waldron, E. Schiermeyer, M. Luxton, and S. Schoettler. (2007)
Free Games by Zynga. [Online]. Available: https://www.zynga.com/

S. Rad, J. Badeen, J. Mateen, J. Munoz, D. Moorjani, and W. Wolfe. (2014)
Tinder. [Online]. Available: https://tinder.com

W. Mobile. (2017) Free Community-based GPS, Maps & Traffic Navigation
App. [Online]. Available: https://www.waze.com/

“Mobile messenger apps,” Statistia, 2016. [Online]. Available: https:
//www.statista.com/study/15257 /mobile-messenger-apps-statista-dossier/

R. Baldwin, “What you need to know about Apple’s fight with the FBIL,”
Engadget, 2016. [Online|. Available: https://www.engadget.com/2016/02/18/
fbi-apple-iphone-explainer/

N. Ingraham, “Senator confirms FBI paid $900,000 to unlock San Bernardino
iPhone,” FEngadget, 2017. [Online]. Available: https://www.engadget.com/
2017/05/08 /fbi-paid-900000-to-unlock-san-bernardino-iphone/

115

www.manaraa.com

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

E. Nakashima, “FBI paid professional hackers one-time fee to
crack San Bernardino iPhone,” Washington Post, 2016. [Online].
Available: https://www.washingtonpost.com/world /national-security/
fbi- paid-professional-hackers-one-time-fee-to-crack-san-bernardino-iphone/
2016/04/12/5397814a-00de-11e6-9d36-33d198ea26¢5_story.html?noredirect=

on&utm_term=.caf3elabddce

T. Fox-Brewster, “The Feds Can Now (Probably) Un-
lock Every iPhone Model In Existence,” Forbes, 2018. [On-
line]. Available: https://www.forbes.com/sites/thomasbrewster/2018/02/26/
government-can-access-any-apple-iphone-cellebrite/

S. Morgan, “U.S. Government’s Multi-Million Dollar ~ Mobile
Forensics ~ Shopping Spree Revealed,” Forbes, 2016. [Online].
Available: https://www.forbes.com/sites/stevemorgan/2016,/04/06/

u-s-governments-multi-million-dollar-mobile-forensics-shopping-spree-revealed /
#721b79261b0d

S. E. Goodison, R. C. Davis, and B. A. Jackson, “Digital Evidence
and the U.S. Criminal Justice System: Identifying Technology and
Other Needs to More Effectively Acquire and Utilize Digital Evidence,”
Rand Corporation, Tech. Rep. RR-890-NIJ, 2015. [Online]. Available:
https://www.ncjrs.gov/pdffilesl/nij/grants/248770.pdf

C. Sadeghi, “Cellphone tracking leads to crucial evidence,”
KXAN, 2015. [Online]. Available: https://www.kxan.com/news/crime/
cell-phone-tracking-leads-to-crucial-evidence_20180316010227311 /1049483190

C. Peak, “Phone Sleuthing Clears Convicted Man,” New Haven Independent,
2018. [Online]. Available: https://www.newhavenindependent.org/index.php/
archives/entry/vernon_horn_dixwell _deli_murder/

K. Yaghmour, Embedded Android: Porting, FExtending, and Customizing. Se-
bastopol, California: O’Reilly Media, 2013.

D. Beres, “Sorry, Fanboys: Android Still More Popular Than iOS In U.S.” The
Huffington Post, 2015. [Online]. Available: https://www.huffingtonpost.com/
entry/android-more-popular-than-ios_us_5678203be4b06fa6887de2e7

R. Amadeo, “Google’s iron grip on Android: Control-
ling open source by any means necessary,” Ars Technica,
2013. [Online]. Available: http://arstechnica.com/gadgets/2013/10/

googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary /

C. Metz, “Android and Linux Reunite After Two-Year Separation,” Wired,
2012. [Online|. Available: http://www.wired.com/2012/03/android-linux/

116

www.manaraa.com

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

P. Brady. (2008) Android Anatomy and Physiology Agenda. [Online|. Available:
https://sites.google.com/site /io/anatomy--physiology-of-an-android

W. E. Shotts, The Linux command line - A complete introduction. San Fran-
cisco, California: No Starch Press, 2012.

D. Regalado, Gray Hat Hacking : The Ethical Hacker’s Handbook (4™ edition).
New York: McGraw-Hill Education, 2015.

S. Mahajan. (2017) How an Android application is executed on Dalvik Virtual
Machine. [Online|. Available: https://stackoverflow.com/questions/13577733

Getting Started with Auto, Google Inc., April 2018. [Online]. Available:
http://developer.android.com/training/auto/start /index.html

N. Sharma, “Android Architecture Guides for beginners,” Fu-
reka, 2013. [Online]. Available: https://www.edureka.co/blog/
beginners-guide-android-architecture/

D. Kohler. (2010) Scripting Layer for Android. [Online]. Available: https:
//github.com/damonkohler/sl4a

M. Kosmiskas, “Understanding the Android bytecode,” Tech Thoughts,
2015. [Online]. Available: http://mariokmk.github.io/programming/2015/03/
06/learning-android-bytecode.html

P. Vara and F. H. (2016) kernel stack and user space
stack. [Online]. Available: http://stackoverflow.com/questions/12911841/
kernel-stack-and-user-space-stack

B. E. Andreasson and E. Andreasson, “JVM performance
optimization, Part 4: C4 garbage collection for low-
latency Java applications,” Java World, 2012. [Online]. Avail-
able: https://www.javaworld.com/article /2078661 /java-concurrency /

jvm-performance-optimization--part-4--c4-garbage-collection-for-low-latency-java-ap.

html

“Memory Management in the Java HotSpot TM Virtual Ma-
chine,” Sun Microsystems, Inc., Tech. Rep. 150215, 2006.
[Online]. Available: http://www.oracle.com /technetwork /java/javase/
memorymanagement-whitepaper-150215.pdf

A. Azfar, K. K. R. Choo, and L. Liu, “Forensic taxonomy of android produc-
tivity apps,” Multimedia Tools and Applications, vol. 76, no. 3, pp. 3313-3341,
February 2017.

M. Widenius and D. Axmark, Mysql Reference Manual. Sebastapol, California:
O’Reilly Media, 2002.

117

www.manaraa.com

90.

ol.

02.

53.

o4.

99.

56.

57.

58.

29.

60.

61.

62.

(2017) Kryo Readme. [Online]. Available: https://github.com/
EsotericSoftware/kryo/blob/master/README.md

(2008) SQLCipher. [Online]. Available: https://www.zetetic.net/sqlcipher/

B. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward, and
D. Marsh, “Industrial perspective on static analysis,” Software Engineering
Journal, vol. 10, no. 2, pp. 69-75, March 1995.

C. Linn and S. Debray, “Obfuscation of executable code to improve resistance
to static disassembly,” Proceedings of the 10th Association for Computing Ma-
chinery Conference on Computer and Communications Security, pp. 290-299,
October 2003.

Android Debug Bridge, Google Inc., January 2013. [Online]. Available:
https://developer.android.com/studio/command-line /adb.html

J. J. Drake, Z. Lanier, C. Mulliner, P. O. Fora, S. A. Ridley, and G. Wicherski,
Android Hacker’s Handbook (1% edition). Indianapolis, Indiana: Wiley, 2014.

J.-L. Gailly and P. Deutsch, ZLIB Compressed Data Format Specification
version 3.8, Network Working Group, May 1996. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1950.txt

R. Winiewski and C. Tumbleson. (2010) A tool for reverse engineering Android
apk files. [Online]. Available: http://ibotpeaches.github.io/Apktool/

I. Guilfanov. (2016) IDAPro. [Online]. Available: https://www.hex-rays.com/
products/ida/index.shtml

B. Gruver. (2017) Smali. [Online]. Available: https://github.com/JesusFreke/
smali

S. Margaritelli, “Dynamically Inject a Shared Library
Into a Running Process on Android/ARM,” evilsocket,
2015. [Online]. Available: https://www.evilsocket.net/2015/05/01/

dynamically-inject-a-shared-library-into-a-running-process-on-androidarm /

C. Mulliner, “Android DDI: Dynamic Dalvik Instrumentation of Android
Applications and Framework,” Hack in the Box 2013, 2013. [Online]. Available:
https://www.mulliner.org/android/feed /mulliner_ddi_30c3.pdf

D. Tomescu, “Mobile penetration testing on Android wusing Drozer,”
Security Cafe, 2015. [Online]. Available: https://securitycafe.ro/2015/07/08/
mobile-penetration-testing-using-drozer/

118

www.manaraa.com

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

MWR Labs, Drozer User Guide, MWR InfoSecurity, March
2015. [Online]. Available: https://labs.mwrinfosecurity.com/assets/BlogFiles/
mwri-drozer-user-guide-2015-03-23.pdf

A. Cozzette, “Intent Spoofing on Android,” Palomino Labs Blog, 2013. [Online].
Available: http://blog.palominolabs.com/2013/05/13/android-security /

J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in com-
modity jvms,” Association for Computing Machinery Special Interest Group on
Programming Languages Notices, vol. 49, no. 10, pp. 83-101, October 2014.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “Taintdroid: An information flow tracking system for real-time privacy
monitoring on smartphones,” Communications of the Association for Computing
Machinery, vol. 57, no. 3, pp. 99-106, March 2014.

W. Chiwei and W. Shiuhpyng, “DROIT : Dynamic Alternation of Dual-
Level Tainting for Malware Analysis,” Journal of Information Science
and FEngineering, vol. 31, mno. 1, January 2015. [Online|. Available:
http://jise.iis.sinica.edu.tw/JISESearch /pages/View /PaperView.jsf 7keyld=1_6

V. Costamagna and C. Zheng, “ARTDroid: A virtual-method hooking
framework on android ART runtime,” Central Europe Workshop Proceedings,
vol. 1575, April 2016. [Online]. Available: http://ceur-ws.org/Vol-1575/
paper_10.pdf

G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, “CodeSurfer/x86A
Platform for Analyzing x86 Executables,” Proceedings of the 14th International
Conference on Compiler Construction, pp. 250-254, April 2005.

G. Balakrishnan and T. Reps, “Improved memory-access analysis for x86 exe-
cutables,” Proceedings of the Joint European Conferences on Theory and Prac-
tice of Software 17th International Conference on Compiler Construction, vol.
3548, pp. 16-35, April 2008.

G. Ramalingam, J. Field, and F. Tip, “Aggregate structure identification and
its application to program analysis,” Proceedings of the 26th Association for
Computing Machinery Special Interest Group on Algorithms and Computation
Theory Symposium on Principles of Programming Languages, pp. 119-132, Jan-
uary 1999.

J. Lim, T. Reps, and B. Liblit, “Extracting output formats from executables,”
13th Working Conference on Reverse Engineering, pp. 167-176, October 2006.

E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A Code Manipulation Tool to
Implement Adaptable Systems,” Adaptable and Extensible Component Systems,
vol. 30, 2002. [Online]. Available: http://asm.ow2.org/current/asm-eng.pdf

119

www.manaraa.com

74
75

76.

e

78.

79.

80.

81.

82.

83.

84.

85.

F. Bellard. (2017) Quick Emulator. [Online|. Available: https://www.qemu.org/
W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic

reverse engineering of input formats,” Proceedings of the 15th Association for
Computing Machinery Conference on Computer and Communications Security,
pp- 391-402, October 2008.

S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drini¢,
D. Mihocka, and J. Chau, “Framework for instruction-level tracing and anal-
ysis of program executions,” Proceedings of the 2nd International Conference on
Virtual Execution Environments, pp. 154-163, June 2006.

A. Slowinska, T. Stancescu, and H. Bos, “Howard: A Dynamic
Excavator for Reverse Engineering Data Structures,” Network and Distributed
System Security Symposium, February 2011. [Online|. Available: http:
//wp.internetsociety.org/ndss/wp-content /uploads/sites/25/2017/09 /slow.pdf

Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures
from binary execution,” Proceedings of the 11th Annual Information Security
Symposium, pp. 5:1-5:1, March 2010.

A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data structures,”
Proceedings of the §th USENIX Conference on Operating Systems Design and
Implementation, pp. 255266, December 2008.

P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst, “Dynamic inference of
abstract types,” Proceedings of the 2006 International Symposium on Software
Testing and Analysis, pp. 255-265, July 2006.

R. Zhang, S. Huang, Z. Qi, and H. Guan, “Static program analysis assisted
dynamic taint tracking for software vulnerability discovery,” Computers and
Mathematics with Applications, vol. 63, pp. 469-480, January 2012.

J. Zhao, J. Qi, L. Zhou, and B. Cui, “Dynamic taint tracking of web application
based on static code analysis,” 10th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, pp. 96-101, July 2016.

W. Kirchmayr, M. Moser, L. Nocke, J. Pichler, and R. Tober, “Integration of
static and dynamic code analysis for understanding legacy source code,” IEFE

International Conference on Software Maintenance and Fvolution, pp. 543-552,
October 2016.

V. Dorneanu. (2015) Static Code Analysis for Smali files. [Online]. Available:
https://github.com/dorneanu/smalisca

Dalvik bytecode, Google Inc., February 2018. [Online]. Available: https:
//source.android.com/devices/tech/dalvik /dalvik-bytecode

120

www.manaraa.com

86

87.

38.

89.

90.
91.

92.

93.

94.

95.

96.

97.

98.

O. A. Ravna. (2017) A world-class dynamic instrumentation framework - Inject
JavaScript to explore native apps on Windows, Mac, Linux, iOS and Android.
[Online]. Available: http://www.frida.re/

[. Darwin, file(1): determine file type - Linux man page, BSD, May 2008.
[Online]. Available: https://linux.die.net/man/1/file

Ul/Application Ezxerciser Monkey, Google Inc., January 2018. [Online].
Available: https://developer.android.com/studio/test/monkey

Chainfire and Coding Code Mobile Technology LLC. (2017) SuperSU. [Online].
Available: http://www.supersu.com/

(2016) TeamWin - TWRP. [Online|. Available: https://twrp.me/

C. Lefebvre, “Linux mint 18.2 sonya kde released,” The Linuxz Mint Blog, July
2017. [Online]. Available: {https://blog.linuxmint.com/?p=3292}

T. Kalanick and G. Camp. (2018) Uber - Get a Ride Near You - Earn Money
by Driving. [Online]. Available: https://www.uber.com/

N. Walters, “How Much Is Uber Worth Right Now?” The Motley
Fool, 2017. [Online|. Available: https://www.fool.com/investing/2017/12/12/
how-much-is-uber-worth-right-now.aspx

(2017) Discord - Free Voice and Text Chat for Gamers. [Online]. Available:
https://discordapp.com/

J. Constine, “Gamer chat tool Discord secretly raised $50M as insiders cashed
out,” Tech Crunch, 2017. [Online]. Available: https://techcrunch.com/2017/
06/07/discord/

A. Earls, “Google takes on IoT with Brillo and Weave,” IoT Agenda, 2016.
[Online]. Available: https://internetofthingsagenda.techtarget.com/feature/
Google-takes-on-IoT-with-Brillo-and- Weave

G. Miller and E. Nakashima, “WikilLeaks says it has obtained
trove of CIA hacking tools,” Washington Post, 2017. [Online].
Available: https://www.washingtonpost.com/world /national-security /
wikileaks-says-it-has-obtained-trove-of-cia-hacking-tools/2017/03/07/
c8c50chc-0345-11e7-b1e9-a05d3c21f7cf story.html?utm_term=.cafOb837h64c

B. Gellman, A. Blake, and G. Miller, “Edward ~ Snow-
den comes forward as source of NSA leaks,” Washington
Post, 2013. [Online]. Available: https://www.washingtonpost.
com/politics/intelligence-leaders-push-back-on-leakers-media,/2013/06,/09/
fff80160-d122-11e2-a73e-826d299{t459 story.html?utm_term=.9abel57323e4

121

www.manaraa.com

99. M. Kumar, “Facebook admits public data of its 2.2 billion users
has been compromised,” The Hacker News, 2018. [Online]. Available:
https://thehackernews.com/2018/04/facebook-data-privacy.html

100. T. Armerding, “The 17 biggest data breaches of the
21st century — CSO Online,” CSO Online, 2018. [On-
line]. Available: https://www.csoonline.com/article/2130877 /data-breach/
the-biggest-data-breaches-of-the-21st-century.html

101. C. Mulliner, “To stay safer on Android, stick with Google Play,” The
Parallaz, 2018. [Online]. Available: https://www.the-parallax.com/2018/01/
25 /safer-android-google-play/

122

www.manharaa.com

REPORT DOCUMENTATION PAGE OM’};”,’(,’O_‘";‘;@‘LV_%’J%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
13-09-2018 Doctoral Dissertation Sept 2015 — Sep 2018
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Automating Mobile Device File Format Analysis

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Dill, Richard, Major, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Air Force Institute of Technology

Department of Electrical and Computer Engineering (AFIT/ENG)

2950 Hobson Way AFIT/ENG/DS/18-S-008

WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Institute of Technology AFIT/ENG

Department of Electrical and Computer Engineering 11. SPONSOR/MONITOR'S REPORT
2950 Hobson Way NUMBER(S)

WPAFB OH 45433-7765

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Forensic tools assist examiners in extracting evidence from application files from mobile devices. If the file format for the
file of interest is known, this process is straightforward, otherwise it requires the examiner to manually reverse engineer
the data structures resident in the file. This research presents the Automated Data Structure Slayer (ADSS), which
automates the process to reverse engineer unknown file formats of Android applications. After statically parsing and
preparing an application, ADSS dynamically runs it, injecting hooks at selected methods to uncover the data structures
used to store and process data before writing to media. The resultant association between application semantics and
bytes in a file reveal the structure and file format. ADSS has been successfully evaluated against Uber and Discord, both
popular Android applications, and reveals the format used by the respective proprietary application files stored on the
filesystem.

15. SUBJECT TERMS

Android, malware, forensics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT 8:GES Dr. Gilbert L. Peterson, AFIT/ENG
19b. TELEPHONE NUMBER (include area code)
U U U UuU 136 312-785-6565, x4281; gilbert.peterson@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

www.manaraa.com

	Air Force Institute of Technology
	AFIT Scholar
	8-10-2018

	Automating Mobile Device File Format Analysis
	Richard A. Dill
	Recommended Citation

	tmp.1542234233.pdf.cYdGu

